On largeness and multiplicity of the first eigenvalue of finite area hyperbolic surfaces

Sugata Mondal ${ }^{1}$

Received: 10 February 2014 / Accepted: 17 April 2015 / Published online: 26 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract

We apply topological methods to study the smallest non-zero number λ_{1} in the spectrum of the Laplacian on finite area hyperbolic surfaces. For closed hyperbolic surfaces of genus two we show that the set $\left\{S \in \mathcal{M}_{2}: \lambda_{1}(S)>\frac{1}{4}\right\}$ is unbounded and disconnects the moduli space \mathcal{M}_{2}. Using this, for genus $g \geq 3$, we show the existence of eigenbranches that start as λ_{1} and eventually becomes $>\frac{1}{4}$.

Keywords Hyperbolic surfaces • Laplace operator • First eigenvalue • Small eigenvalues

1 Introduction

In this paper we identify hyperbolic surfaces with quotients of the Poincaré upper halfplane \mathbb{H} by discrete torsion free subgroups of $\operatorname{PSL}(2, \mathbb{R})$ called Fuchsian groups. The Laplacian on \mathbb{H} is the differential operator Δ which associates to a real-valued C^{2}-function f the function

$$
\begin{equation*}
\Delta f(z)=-y^{2}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right) . \tag{1.1}
\end{equation*}
$$

For any Fuchsian group Γ, the induced differential operator on $S=\mathbb{H} / \Gamma, \Delta=\Delta_{S}$ is called the Laplacian on S. It is a non-negative operator whose spectrum $\operatorname{spec}(\Delta)$ is contained in a smallest interval $\left[\lambda_{0}(S), \infty\right) \subset \mathbb{R}^{+} \cup\{0\}$ with $\lambda_{0}(S) \geq 0$. Points in the discrete spectrum will be referred to as eigenvalues. In particular this means $\lambda \geq 0$ is an eigenvalue if there exists a non-zero C^{2}-function $f \in L^{2}(S)$, called a λ-eigenfunction, such that $\Delta f=\lambda f$. The pair (λ, f) is called an eigenpair. When $0<\lambda \leq 1 / 4, \lambda$ is called a small eigenvalue, f is called a small eigenfunction and the pair (λ, f) is called a small eigenpair. Recall that we consider only real-valued functions and so any eigenfunction is a real-valued function.

[^0]We shall restrict ourselves to hyperbolic surfaces with finite area. Any such surface S is homeomorphic to a closed Riemann surface \bar{S} of certain genus g from which some n many points are removed. In that case S is called a finite area hyperbolic surface of type (g, n). Each of these n points is called a puncture of S.

The spectrum of the Laplacian of a closed hyperbolic surface S consists of a discrete set:

$$
\begin{equation*}
0=\lambda_{0}<\lambda_{1}(S) \leq \cdots \leq \lambda_{n}(S) \leq \cdots \infty \tag{1.2}
\end{equation*}
$$

such that $\lambda_{i}(S) \rightarrow \infty$ as $i \rightarrow \infty$. Each number in the above sequence is repeated according to its multiplicity as eigenvalue. The number $\lambda_{i}(S)$ is called the i-th eigenvalue of S. The moduli space of genus g closed hyperbolic surfaces is denoted by \mathcal{M}_{g}. It is known that the map $\lambda_{i}: \mathcal{M}_{g} \rightarrow \mathbb{R}$ that assigns a surface $S \in \mathcal{M}_{g}$ to its i-th eigenvalue $\lambda_{i}(S)$ is continuous and bounded [4]. Hence

$$
\begin{equation*}
\Lambda_{i}(g)=\sup _{S \in \mathcal{M}_{g}} \lambda_{i}(S)<\infty \tag{1.3}
\end{equation*}
$$

For non-compact hyperbolic surfaces of finite area the spectrum of the Laplacian is more complicated. It consists of both continuous and discrete components (see [14] for detail). However, the part of the spectrum lying in $\left[0, \frac{1}{4}\right)$ is discrete. Keeping resemblance to the above definition, for any hyperbolic surface S, let us define $\lambda_{1}(S)$ to be the smallest positive number in $\operatorname{spec}(\Delta)$. In particular, if $\lambda_{1}<\frac{1}{4}$ then it is an eigenvalue. The function λ_{1}, so defined, is bounded by $\frac{1}{4}$ because S has a continuous spectrum on $\left[\frac{1}{4}, \infty\right)$. As before we consider the moduli space $\mathcal{M}_{g, n}$ of finite area hyperbolic surfaces of type (g, n) and define

$$
\begin{equation*}
\Lambda_{1}(g, n)=\sup _{S \in \mathcal{M}_{g, n}} \lambda_{1}(S) \tag{1.4}
\end{equation*}
$$

In [22] Atle Selberg proved that for any congruence subgroup Γ of $\operatorname{SL}(2, \mathbb{Z})$

$$
\begin{equation*}
\lambda_{1}(\mathbb{H} / \Gamma) \geq \frac{3}{16} . \tag{1.5}
\end{equation*}
$$

Recall that a congruence subgroup is a discrete subgroup of $\operatorname{SL}(2, \mathbb{Z})$ that contains one of the Γ_{n} where

$$
\Gamma_{n}=\left\{\left(\begin{array}{ll}
a & b \tag{1.6}\\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}): a \equiv 1 \equiv d \text { and } b \equiv 0 \equiv c(\bmod n)\right\}
$$

is the principal congruence subgroup of level n. Moreover he conjectured:
Conjecture 1.1 For any congruence subgroup $\Gamma, \lambda_{1}(\mathbb{H} / \Gamma) \geq \frac{1}{4}$.
Huxley [13] proved this conjecture for Γ_{n} with $n \leq 6$. Several attempts have been made to prove it (see [14, Chapter 11] for details) in the general case. The best known bound is $\frac{975}{4096}$ due to Kim and Sarnak [18]. This conjecture motivated, in particular, the question of our interest:

Question 1.1 Given any genus $g \geq 2$ does there exist a closed hyperbolic surface of genus g with λ_{1} at least $\frac{1}{4}$?

A slightly weaker question than the above one would be: Is $\Lambda_{1}(g) \geq \frac{1}{4}$? This question is studied in [5] by Buser et al. and in [6] by Brooks and Makover. The ideas in [5,6], in the light of the bound of Kim and Sarnak [18], provide the following.

Theorem 1.1 Given any $\epsilon>0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that for any $g \geq N_{\epsilon}$ there exist closed hyperbolic surfaces of genus g with $\lambda_{1} \geq \frac{975}{4096}-\epsilon$.

The constant $\frac{975}{4096}$ in the above theorem can be replaced by $\frac{1}{4}$ if Conjecture 1.1 is true. Hence it is tempting to conjecture:

Conjecture 1.2 For every $g \geq 2$ there exists a closed hyperbolic surface of genus g whose λ_{1} is at least $\frac{1}{4}$.

Remark 1.1 Observe that even if Selberg's conjecture (Conjecture 1.1) is true, Theorem 1.1 would not provide a positive answer to Conjecture 1.2. However, it would imply that for special values of g (see [5]) $\Lambda_{1}(g) \geq \frac{1}{4}$ and $\liminf _{g \rightarrow \infty} \Lambda_{1}(g) \geq \frac{1}{4}$.

The existence of genus two hyperbolic surfaces with $\lambda_{1}>\frac{1}{4}$ has been known in the literature for sometime [15]. It is known that the Bolza surface has λ_{1} approximately 3.8 (see [23] for more details). We consider the subset $\mathcal{B}_{2}\left(\frac{1}{4}\right)=\left\{S \in \mathcal{M}_{2}: \lambda_{1}(S)>\frac{1}{4}\right\}$ of the moduli space \mathcal{M}_{2}. From the continuity of λ_{1} it is clear that $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ is open. Our first result, in some sense, describes how large the open subset $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ is.

Theorem 1.2 $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ is an unbounded set that disconnects \mathcal{M}_{2}.
Sketch of the proof of Theorem 1.2 First we prove that $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ disconnects \mathcal{M}_{2}. For that we argue by contradiction and assume that $\mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ is connected. Now for any $S \in$ $\mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right), \lambda_{1}(S)$ is small and hence has multiplicity exactly one by Proposition 1.1. In particular, the space of $\lambda_{1}(S)$-eigenfunctions is one dimensional and so the nodal set \mathcal{Z}_{S} of $\lambda_{1}(S)$-eigenfunctions is defined without any ambiguity (see Sect. 2.2). We shall see that under our assumptions \mathcal{Z}_{S} is a disjoint union of simple closed curves. With the help of this property we shall deduce that \mathcal{Z}_{S} is constant, up to isotopy, on $\mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$. Finally, using an argument involving geodesic pinching (Proposition 3.1) we shall show that there exist surfaces S_{1} and S_{2} in $\mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ such that $\mathcal{Z}_{S_{1}}$ is not isotopic to $\mathcal{Z}_{S_{2}}$. This provides the desired contradiction. The proof of the rest of the theorem uses similar topological arguments.

For finite area hyperbolic surfaces with Euler characteristic -2 the ideas in the above proof carries over to provide the following.

Theorem 1.3 For any (g, n) with $2 g-2+n=2$ (i.e. $(g, n)=(2,0),(1,2)$ or $(0,4))$ the set $\mathcal{C}_{g, n}\left(\frac{1}{4}\right)=\left\{S \in \mathcal{M}_{g, n}: \lambda_{1}(S) \geq \frac{1}{4}\right\}$ disconnects $\mathcal{M}_{g, n}$. Moreover for $(g, n)=(2,0)$ and $(1,2)$ it is unbounded.

1.1 Eigenvalue branches

Recall that the moduli space \mathcal{M}_{g} is the quotient of the Teichmüller space \mathcal{T}_{g} by the Teichmüller modular group M_{g} (see [4]). We are shifting from the moduli space to the Teichmüller space mainly because we wish to talk about analytic paths which involve coordinates and on \mathcal{T}_{g} one has the Fenchel-Nielsen coordinates (given a pants decomposition) which is easy to describe.

Let $\gamma:[0,1] \rightarrow \mathcal{T}_{2}$ be an analytic path. Since, in this case, λ_{1} is simple as long as small (by Proposition 1.1), the function $\lambda_{1}\left(S^{t}\right)\left(S^{t}=\gamma(t)\right)$ is also analytic (see Theorem 1.4) if $\lambda_{1}\left(S^{t}\right) \leq \frac{1}{4}$ for all $t \in[0,1]$. For higher genus λ_{1} may not be simple even if small (see Sect. 1.2). Therefore, for an analytic path $\gamma:[0,1] \rightarrow \mathcal{T}_{g}, \lambda_{1}\left(S^{t}\right)$ is continuous but need not be analytic even if $\lambda_{1}\left(S^{t}\right) \leq \frac{1}{4}$ for all $t \in[0,1]$. However we have the following result from [4, Theorem 14.9.3]:

Theorem 1.4 Let $\left(S^{t}\right)_{t \in I}$ be a real analytic path in \mathcal{T}_{g}. Then there exist real analytic functions $\lambda_{k}^{t}: I \rightarrow \mathbb{R}$ such that for each $t \in I$ the sequence $\left(\lambda_{k}^{t}\right)$ consist of all eigenvalues of S^{t} (listed with multiplicities, though not in increasing order).

Each function λ_{k}^{t} is called a branch of eigenvalues along S^{t}. More precisely
Definition 1.1 Let $\alpha:[0,1] \rightarrow \mathcal{T}_{g}$ be an analytic path. An analytic function $\lambda_{t}:[0,1] \rightarrow \mathbb{R}$ is called a branch of an eigenvalue along α if, for each t, λ_{t} is an eigenvalue of $\alpha(t)$. If $\lambda_{0}=\lambda_{i}(\alpha(0))$ then we shall say that λ_{t} is a branch of eigenvalues along α that starts as λ_{i}. If the underlying path α is fixed then we shall skip referring to it.

Here, instead of considering λ_{1}, we consider branches of eigenvalues that start as λ_{1} and modify question 1.1 as:

Question 1.2 For any $g \geq 2$ does there exist branches of eigenvalues in \mathcal{T}_{g} that start as λ_{1} and exceeds $\frac{1}{4}$ eventually?

Fortunately this modified question turns out to be much easier than the original one and we have a positive answer to it.

Theorem 1.5 For any $g \geq 2$ there are branches of eigenvalues in \mathcal{T}_{g} that start as λ_{1} and take values strictly bigger than $\frac{1}{4}$.

Recall that \mathcal{T}_{2} can be embedded in \mathcal{T}_{g} as an analytic subset containing surfaces with certain symmetries (see Sect. 4). The branches in Theorem 1.5 will be obtained by composing the branches in \mathcal{I}_{2} by the above embedding $\Pi: \mathcal{T}_{2} \rightarrow \mathcal{T}_{g}$. We shall use a geodesic pinching argument to prove that among these branches there are ones that start as λ_{1}.

1.2 Multiplicity

For any eigenvalue λ of S, the dimension of $\operatorname{ker}(\Delta-\lambda .1)$ is called the multiplicity of λ. If the multiplicity of λ_{1} were one for all closed hyperbolic surfaces of genus g then Theorem 1.5 would have showed the existence of surfaces with $\lambda_{1}>\frac{1}{4}$ implying Conjecture 1.2. However this is not the case and in fact the following is proved in [10]:

Theorem 1.6 For every $g \geq 3$ and $n \geq 0$ there exists a surface $S \in \mathcal{M}_{g, n}$ such that $\lambda_{1}(S)$ is small and has multiplicity equal to the integral part of $\frac{1+\sqrt{8 g+1}}{2}$.

For $g \geq 3$ the above bound is more than 3 . Hence our methods in Theorem 1.2 for $g=2$ do not work for $g \geq 3$. In [20] the following upper bound on the multiplicity of a small eigenvalue is proved.

Proposition 1.1 Let S be a finite area hyperbolic surface of type (g, n). Then the multiplicity of a small eigenvalue of S is at most $2 g-3+n$.

Our last result is an improvement of this result for finite area hyperbolic surfaces of type $(0, n)$. Recall that for any finite area hyperbolic surface if $\frac{1}{4}$ is an eigenvalue then it must be a cuspidal eigenvalue (see Sect. 2.3). Now, hyperbolic surfaces of type $(0, n)$ can not have small cuspidal eigenvalues by [20, Proposition 2] (see also [13]). Therefore, for a finite area hyperbolic surfaces S of type $(0, n)$ if $\lambda_{1}(S)$ is a small eigenvalue then automatically $\lambda_{1}(S)<\frac{1}{4}$.

Theorem 1.7 Let S be a finite area hyperbolic surface of genus 0 . If $\lambda_{1}(S)$ is a small eigenvalue then the multiplicity of $\lambda_{1}(S)$ is at most three.

Sketch of proof Let \bar{S} denote the closed surface obtained by filling in the punctures of S. By assumption $\lambda_{1}(S)$ is small. Following the discussion above $\lambda_{1}(S)<\frac{1}{4}$. Let ϕ be a $\lambda_{1}(S)$ eigenfunction with nodal set $\mathcal{Z}(\phi)$. Let $\overline{\mathcal{Z}(\phi)}$ be the closure of $\mathcal{Z}(\phi)$ in \bar{S} which is a finite graph by Lemma 2.1.

Using Jordan curve theorem and Courant's nodal domain theorem (see Sect. 2.2) we shall deduce the simple description of $\overline{\mathcal{Z}(\phi)}$ as a simple closed curve in \bar{S}. In particular, if one of the punctures p of S lies on $\overline{\mathcal{Z}(\phi)}$ then the number of arcs in $\overline{\mathcal{Z}(\phi)}$ emanating from p is at most two.

Let p be one of the punctures of S. We shall deduce that in any cusp around p any $\lambda_{1}(S)$-eigenfunction ϕ has a Fourier development of the form:

$$
\begin{equation*}
\phi(x, y)=\phi_{0} y^{1-s}+\sum_{j \geq 1} \sqrt{\frac{2 j y}{\pi}} K_{s-\frac{1}{2}}(j y)\left(\phi_{j}^{e} \cos (j . x)+\phi_{j}^{o} \sin (j . x)\right) \tag{1.7}
\end{equation*}
$$

where $\lambda_{1}(S)=s(1-s)$ with $s \in\left(\frac{1}{2}, 1\right]$ and K is the modified Bessel function of exponential decay (see Sect. 2.3). Denote the vector space generated by $\lambda_{1}(S)$-eigenfunctions by \mathcal{E}_{1} and consider the map $\pi: \mathcal{E}_{1} \rightarrow \mathbb{R} n^{3}$ given by $\pi(\phi)=\left(\phi_{0}, \phi_{1}^{e}, \phi_{1}^{o}\right)$. This is a linear map and so if $\operatorname{dim} \mathcal{E}_{1}>3$ then $\operatorname{ker} \pi$ is non-empty. Let $\psi \in \operatorname{ker} \pi$ i.e. $\psi_{0}=\psi_{1}^{e}=\psi_{1}^{o}=0$. Then by the result [17] of Judge, the number of arcs in $\overline{\mathcal{Z}(\psi)}$ emanating from p is at least four, a contradiction to the above description of $\overline{\mathcal{Z}(\phi)}$ at p.

2 Preliminaries

In this section we recall some definitions and results that will be necessary in the later sections. We begin by some backgrounds from topology where we recall a particular form of the Euler-Poincaré formula. Then we recall some results on the structure of nodal sets of eigenfunctions. The last part recalls the Fourier expansion of cusp forms in a cusp.

2.1 Backgrounds from topology

Here we recall some background materials from topology. A (finite) graph G on S consists of a pair (V, E) where V, called the set of vertices of G, is a finite collection of points of S and E, called the set of edges of G, is a finite collection of mutually non-intersecting embedded arcs in S joining the points in V. If an edge e joins two vertices v and w then we say that e is adjacent to v and w. The total number of edges adjacent to a vertex is called the degree of the vertex. A vertex is called an isolated vertex if its degree is zero and a free vertex if its degree is one. It is not very difficult to observe that the Euler characteristic of a finite graph without any isolated or free vertex is always ≤ 0.

Let $G=(V, E)$ be a graph on S. Since both V and E are finite it is easy to observe that for any $\epsilon>0$ small enough the ϵ-neighborhood $N_{\epsilon}(G)$ of G has piecewise smooth boundary and deformation retracts to G. Moreover, any component C of $S \backslash N_{\epsilon}(G)$ is a deformation retraction of the unique component C^{\prime} of $S \backslash G$ that contains C. Now choose two such constants ϵ, δ with $\delta<\epsilon$ and consider the decomposition of S into the components of $S \backslash N_{\delta}(G)$ and $N_{\epsilon}(G)$. Then one can use the Mayer-Vietoris sequence [11, p-149] to observe that

$$
\begin{equation*}
\chi(S)=\sum_{i} \chi\left(D_{i}\right)+\chi\left(N_{\epsilon}(G)\right) \tag{2.1}
\end{equation*}
$$

where D_{i} runs over the components of $S \backslash N_{\delta}(G)$ and $\chi(A)$ denotes the Euler characteristic of A. Since $N_{\epsilon}(G)$ deformation retracts to G and each component C of $S \backslash N_{\delta}(G)$ is a deformation retraction of the unique component C^{\prime} of $S \backslash G$ that contains C we obtain

$$
\begin{equation*}
\chi(S)=\sum_{i} \chi\left(D_{i}\right)+\chi(G) \tag{2.2}
\end{equation*}
$$

where D_{i} runs over the components of $S \backslash G$. This formula is sometimes called the EulerPoincaré formula.

2.2 Nodal sets

For any function $f: S \rightarrow \mathbb{R}$, the set $\{x \in S: f(x)=0\}$ is called the nodal set $\mathcal{Z}(f)$ of f. Observe that $\mathcal{Z}(f)$ is invariant under multiplication by non-zero constants i.e. $\mathcal{Z}(f)=$ $\mathcal{Z}(c . f)$ for any $c \neq 0$. Each component of $S \backslash \mathcal{Z}(f)$ is called a nodal domain of f. In a neighborhood of a regular point $p \in \mathcal{Z}(f)\left(\nabla_{p} f \neq 0\right)$ the implicit function theorem implies that $\mathcal{Z}(f)$ is a smooth curve. In a neighborhood of a critical point $p \in \mathcal{Z}(f)\left(\nabla_{p} f=0\right)$, it is not so simple to describe $\mathcal{Z}(f)$. When f is an eigenfunction of the Laplacian we have the following description due to Cheng [8]:

Theorem 2.1 Let S be a surface with a C^{∞} metric. Then, for any solution of the equation $(\Delta-h) \phi=0, h \in C^{\infty}(S)$, one has:
(i) Critical points on the nodal set $\mathcal{Z}(\phi)$ are isolated.
(ii) Any critical point in $\mathcal{Z}(\phi)$ has a neighborhood N in S which is diffeomorphic to the disc $\{z \in \mathbb{C}:|z|<1\}$ by a C^{1}-diffeomorphism that sends $\mathcal{Z}(\phi) \cap N$ to an equiangular system of rays.

Remark 2.1 (1) $\mathcal{Z}(\phi)$ does not contain any isolated or free vertex.
(2) If $p \in \mathcal{Z}(\phi)$ is a critical point of ϕ then the degree of the graph $\mathcal{Z}(\phi)$ at p is at least 4 . Hence if a component of $\mathcal{Z}(\phi)$ is a simple closed loop then it is automatically smooth.

When S is closed Theorem 2.1 implies that $\mathcal{Z}(\phi)$ is a finite graph. When S is non-compact with finite area it implies local finiteness of $\mathcal{Z}(\phi)$ but not global. In this particular case we have the following lemma due to Otal [20, Lemma 6] (the second part is [20, Lemma 1])

Lemma 2.1 Let S be a hyperbolic surface with finite area and let $\phi: S \rightarrow \mathbb{R}$ be a λ eigenfunction with $\lambda \leq \frac{1}{4}$. Then the closure of $\mathcal{Z}(\phi)$ in \bar{S} is a finite graph without any isolated or free vertex. Moreover, each nodal domain of ϕ has negative Euler characteristic.

In particular, $\overline{\mathcal{Z}(\phi)}$ is a union of finitely many (not necessarily disjoint) cycles in \bar{S} that may contain some of the punctures of S. Next we recall Courant's nodal domain theorem.

Theorem 2.2 Let S be a closed hyperbolic surface. Then the number of nodal domains of a $\lambda_{i}(S)$-eigenfunction can be at most $i+1$.

The proof (see [7] or [8]) of this theorem works also for finite area hyperbolic surfaces if $\lambda_{i}<\frac{1}{4}$. In particular, for a hyperbolic surface S with finite area if $\lambda_{1}(S)<\frac{1}{4}$ then the number of nodal domains of a $\lambda_{1}(S)$-eigenfunction is at most two. Since any λ_{1}-eigenfunction ϕ has mean zero, $\mathcal{Z}(\phi)$ must disconnect S. Hence any λ_{1}-eigenfunction has exactly two nodal domains.

2.3 Cusps

Let S be a finite area hyperbolic surface. Then S is homeomorphic to a closed surface with finitely many points removed. Each of these points, called punctures, has special neighborhoods in S called cusps. Denote by ι the parabolic isometry $\iota: z \rightarrow z+2 \pi$. For a choice of $t>0$, a cusp \mathcal{P}^{t} is the half-infinite cylinder $\left.\left\{z=x+i y: y>\frac{2 \pi}{t}\right\} /<\iota\right\rangle$. The boundary curve $\left\{y=\frac{2 \pi}{t}\right\}$ is a horocycle of length t. The hyperbolic metric on \mathcal{P}^{t} has the form:

$$
\begin{equation*}
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}} \tag{2.3}
\end{equation*}
$$

Any function $f \in L^{2}\left(\mathcal{P}^{t}\right)$ has a Fourier development in the x variable of the form

$$
\begin{equation*}
f(z)=\sum_{n \in \mathbb{Z}^{*}} f_{n}(y) \cos \left(n x+\theta_{n}\right) \tag{2.4}
\end{equation*}
$$

If f satisfy the equation $\Delta f=s(1-s) f$ then the above expression can be simplified as

$$
\begin{align*}
f(z) & =f_{0}(y)+\sum_{j \geq 1} f_{j} \sqrt{\frac{2 j y}{\pi}} K_{s-\frac{1}{2}}(j y) \cos \left(j \cdot x-\theta_{j}\right) \\
& =f_{0}(y)+\sum_{j \geq 1} \sqrt{\frac{2 j y}{\pi}} K_{s-\frac{1}{2}}(j y)\left(f_{j}^{e} \cos (j . x)+f_{j}^{o} \sin (j . x)\right) \tag{2.5}
\end{align*}
$$

where K_{s} is the modified Bessel function (see [17]) and

$$
\begin{align*}
& f_{0}(y)=f_{0,1} y^{s}+f_{0,2} y^{1-s} \quad \text { if } s \neq \frac{1}{2} \text { and } \\
& f_{0}(y)=f_{0,1} y^{\frac{1}{2}}+f_{0,2} y^{\frac{1}{2}} \log y \text { if } s=\frac{1}{2} \tag{2.6}
\end{align*}
$$

The function f is called cuspidal if $f_{0}(y) \equiv 0$. Observe that if $s=\frac{1}{2}$ then, since $f \in L^{2}\left(\mathcal{P}^{t}\right)$, we must have $f_{0}(y) \equiv 0$ i.e. f must be cuspidal.

3 Genus two: Proof of Theorem 1.2

We begin by proving that $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ disconnects \mathcal{M}_{2}. We argue by contradiction and assume that $\mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ is connected. Now, for any $S \in \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right): \lambda_{1}(S) \leq \frac{1}{4}$ and so $\lambda_{1}(S)$ is simple by Proposition 1.1. Recall that if an eigenvalue λ is simple then the nodal set of λ-eigenfunctions is defined without any ambiguity (see Sect. 2.2). In particular, for any $S \in \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ the nodal set \mathcal{Z}_{S} of $\lambda_{1}(S)$-eigenfunctions is defined without any ambiguity. Now let ϕ_{S} be a $\lambda_{1}(S)$-eigenfunction with nodal set $\mathcal{Z}\left(\phi_{S}\right)=\mathcal{Z}_{S}$. Since ϕ_{S} is an eigenfunction corresponding to $\lambda_{1}(S)$, by Courant's nodal domain theorem, $S \backslash \mathcal{Z}\left(\phi_{S}\right)$ has exactly two components. Denote by S^{+}(resp. S^{-}) the component of $S \backslash \mathcal{Z}\left(\phi_{S}\right)$ where ϕ_{S} is positive (resp. negative). By the Euler-Poincaré formula (2.2) applied to the graph $\mathcal{Z}\left(\phi_{S}\right)$ we have the following equality:

$$
\begin{equation*}
\chi(S)=\chi\left(S^{+}\right)+\chi\left(S^{-}\right)+\chi\left(\mathcal{Z}\left(\phi_{S}\right)\right) \tag{3.1}
\end{equation*}
$$

Since $\chi(S)=-2$ and both $\chi\left(S^{+}\right)$and $\chi\left(S^{-}\right)$are negative by Lemma 2.1 we conclude from (3.1) that $\chi\left(\mathcal{Z}\left(\phi_{S}\right)\right)=0$. This immediately implies that $\mathcal{Z}\left(\phi_{S}\right)$ consists of disjoint

Fig. 1 Decomposition

Decomposition
simple closed curve(s) that divide S into exactly two components. From Theorem 2.1 it is clear that each curve in $\mathcal{Z}\left(\phi_{S}\right)$ appear in the boundary of each of S^{+}and S^{-}. This, together with the simplicity of $\mathcal{Z}\left(\phi_{S}\right)$, implies that the number of boundary components of S^{+}and S^{-} are the same. Now a simple Euler characteristic counting provides the following description (Fig. 1).

Lemma 3.1 For any $S \in \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ the nodal set \mathcal{Z}_{S} consists either of three smooth simple closed curves that divide S into two pair of pants (the first picture below) or of a unique smooth simple closed curve that divides S into two tori with one hole (the second picture below).

Now we have the following:
Lemma 3.2 Let $S \in \mathcal{M}_{2}$ be such that $\lambda_{1}(S)$ is simple and the nodal set \mathcal{Z}_{S} of $\lambda_{1}(S)$ eigenfunctions is also simple. Then S has a neighborhood $\mathcal{N}(S)$ in \mathcal{M}_{2} such that $\lambda_{1}\left(S^{\prime}\right)$ is simple for any $S^{\prime} \in \mathcal{N}(S)$ and the nodal set $\mathcal{Z}_{S^{\prime}}$ of $\lambda_{1}\left(S^{\prime}\right)$-eigenfunctions isotopic to \mathcal{Z}_{S}.

Proof First observe that since $\lambda_{1}(S)$ is simple, by the continuity of λ_{1} as a function, we have a neighborhood $\mathcal{N}^{\prime}(S)$ of S in \mathcal{M}_{2} such that $\lambda_{1}\left(S^{\prime}\right)$ is simple for any $S^{\prime} \in \mathcal{N}^{\prime}(S)$. Let ϕ_{S} be a $\lambda_{1}(S)$-eigenfunction and let S^{+}and S^{-}be the two components of $S \backslash \mathcal{Z}\left(\phi_{S}\right)$ such that ϕ_{S} has positive sign on S^{+}and negative sign on S^{-}. Consider a tubular neighborhood \mathcal{T}_{S} of $\mathcal{Z}\left(\phi_{S}\right)$ in S. By [19, Theorem 3.36] (see also [12,16]) we have a neighborhood $\mathcal{N}(S) \subset \mathcal{N}^{\prime}(S)$ of S such that for any $S^{\prime} \in \mathcal{N}(S)$, one can obtain a $\lambda_{1}\left(S^{\prime}\right)$-eigenfunction $\phi_{S^{\prime}}$ that has positive sign on $S^{+} \backslash \mathcal{T}_{S}$ and negative sign on $S^{-} \backslash \mathcal{T}_{S}$. In particular, $\mathcal{Z}_{S^{\prime}}=\mathcal{Z}\left(\phi_{S^{\prime}}\right) \subset \mathcal{T}_{S}$. Hence by the description of $\mathcal{Z}_{S^{\prime}}$ as in Lemma 3.1 the proof follows.

Therefore, there exists $S \in \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ such that \mathcal{Z}_{S} consists of only one curve if and only if for all $S^{\prime} \in \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right), \mathcal{Z}_{S^{\prime}}$ consists of only one curve. This is a contradiction to our next result Proposition 3.1.

Definition 3.1 The systole $s(S)$ of a surface S is the minimum of the lengths of closed geodesics on S. The injectivity radius of S at a point p is the radius of the largest geodesic disc that can be embedded in S with center p. For any $\epsilon>0$ the set of points of S with injectivity radius at least ϵ is denoted by $S^{[\epsilon, \infty)}$. Each point in the complement $S^{(0, \epsilon)}=S \backslash S^{[\epsilon, \infty)}$ has
injectivity radius at most $\epsilon . S^{[\epsilon, \infty)}$ and $S^{(0, \epsilon)}$ are respectively called ϵ-thick part and ϵ-thin part of S.

Proposition 3.1 Let S be a finite area hyperbolic surface of type (g, n). Let $G=\left(\gamma_{i}\right)_{i=1}^{k}$ be a collection of smooth, mutually non-intersecting simple closed curves on S that separates S in exactly two components. Assume that G is minimal in the sense that no proper subset of G can separate S. Then given any $\epsilon, \delta>0$ there exists a finite area hyperbolic surface S_{G} of type (g, n) with $s\left(S_{G}\right)<\epsilon$ such that $\lambda_{1}\left(S_{G}\right)<\delta$ is simple and the nodal set $\mathcal{Z}_{S_{G}}$ of $\lambda_{1}\left(S_{G}\right)$-eigenfunctions is isotopic to G.

Remark 3.1 For particular cases it is not very difficult to construct two collections of curves on S, as in the above lemma, that are not isotopic. In the case $(g, n)=(2,0)$ claim 3.1 provides two such collections. Therefore Proposition 3.1 indeed provide two surfaces S_{1}, $S_{2} \in \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ such that $\mathcal{Z}_{S_{1}}$ is not isotopic to $\mathcal{Z}_{S_{2}}$.

The proof of Proposition 3.1 uses the behavior of sequences of small eigenpairs over degenerating sequences of hyperbolic surfaces. For precise definitions of these concepts we refer the reader to [19]. We immediately remark that such behavior has been widely studied in the literature, see for example [$9,12,16,24]$. However, the terminology used in the next proof follows those in [19].

Proof Without loss of generality we may assume that each curve in G is a geodesic. Extend G to a pants decomposition $P=\left(\gamma_{i}\right)_{i=1}^{3 g-3+n}$ of $S[4, \mathrm{p}-94]$. Let $\left(l_{i}, \theta_{i}\right)$ denote the FenchelNielsen coordinates on $\mathcal{T}_{g, n}$ with respect to $\left(\gamma_{i}\right)_{i=1}^{3 g-3+n}$. Here l_{i} denotes the length parameter and θ_{i} denotes the twist parameter along γ_{i}.

Now consider the sequence of surfaces $\left(S_{m}\right)$ in $\mathcal{T}_{g, n}$ such that $l_{i}\left(S_{m}\right)=\frac{1}{m}$ for $i \leq k$, $l_{j}=c_{1}>0$ for $j>k$ and $\theta_{j}=c_{2}>0$ for $1 \leq j \leq 3 g-3+n$. Then, up to extracting a subsequence, (S_{m}) converges to a finite area hyperbolic surface $S_{\infty} \in \partial \mathcal{M}_{g, n}$. Let us denote the extracted subsequence by $\left(S_{m}\right)$ itself. Observe that S_{∞} is obtained from S by pinching the geodesics in G. Namely, for each $i=1, \ldots, k$ there is a geodesic γ_{i}^{m} in S_{m}, in the homotopy class of γ_{i}, whose length tends to zero as $m \rightarrow \infty$.

The number of components of $S_{\infty} \in \overline{\mathcal{M}_{g, n}}$ is exactly two. Hence by Colbois and Courtois [9], $\lambda_{1}\left(S_{m}\right) \rightarrow 0$ and all other eigenvalues of S_{m} stay away from zero. In particular $\lambda_{1}\left(S_{m}\right)$ is simple for m sufficiently large. Let $\phi_{S_{m}}$ be a $\lambda_{1}\left(S_{m}\right)$-eigenfunction with L^{2}-norm 1. Recall that we want to prove that for any $\epsilon, \delta>0$ there exists a S_{G} with $s\left(S_{G}\right)<\epsilon$ such that $\lambda_{1}\left(S_{G}\right)<\delta$ is simple and the nodal set $\mathcal{Z}_{S_{G}}$ of any $\lambda_{1}\left(S_{G}\right)$-eigenfunction is isotopic to G. Since $s\left(S_{m}\right) \rightarrow 0$ by construction and $\lambda_{1}\left(S_{m}\right) \rightarrow 0$ by above it suffices to prove that $\mathcal{Z}\left(\phi_{S_{m}}\right)$ is isotopic to G for sufficiently large m.

Now we apply [19, Theorem 3.34] to extract a subsequence of $\phi_{S_{m}}$ that converges uniformly over compacta to a 0 -eigenfunction ϕ_{∞} of S_{∞} with L^{2}-norm 1 . Let us denote the extracted subsequence by (S_{m}) itself. Since 0 -eigenfunctions are constant functions, ϕ_{∞} is constant on each components of S_{∞}.

Lemma 3.3 The two constant values of ϕ_{∞} on the two components of S_{∞} are non-zero and have opposite sign.

Proof For $\epsilon>0$ let us denote the L^{2}-norm of $\phi_{S_{m}}$ restricted to $S_{m}^{(0, \epsilon)}$ by $\left\|\phi_{S_{m}}\right\|_{S_{m}^{(0, \epsilon)}}$. By the uniform convergence of $\phi_{S_{m}}$ to ϕ_{∞} over compacta we have

$$
\int_{S_{\infty}^{[\epsilon, \infty)}} \phi_{\infty}^{2}=\lim _{m \rightarrow \infty} \int_{S_{m}^{[\epsilon, \infty)}} \phi_{S_{m}}^{2}=1-\lim _{m \rightarrow \infty}\left\|\phi_{S_{m}}\right\|_{S_{m}^{(0, \epsilon)}}^{2} .
$$

Since $\int_{S_{\infty}} \phi_{\infty}^{2}=\lim _{\epsilon \rightarrow 0} \int_{S_{\infty}^{[\epsilon, \infty)}} \phi_{\infty}^{2}=1$ we obtain that for any $\delta>0$ there exists $\epsilon>0$ such that $\lim _{m \rightarrow \infty}\left\|\phi_{S_{m}}\right\|_{S_{m}^{(0, \epsilon)}} \leq \delta$. Now

$$
\begin{aligned}
& \left|\int_{S_{\infty}^{(\epsilon, \infty)}} \phi_{\infty}\right|=\lim _{m \rightarrow \infty}\left|\int_{S_{m}^{(\epsilon, \infty)}} \phi_{S_{m}}\right|=\left|0-\lim _{m \rightarrow \infty} \int_{S_{m}^{(0, \epsilon)}} \phi_{S_{m}}\right| \\
& \quad \leq \lim _{m \rightarrow \infty} \sqrt{\left|S_{m}^{(0, \epsilon)}\right|\left\|\phi_{S_{m}}\right\|_{S_{m}^{(0, \epsilon)}}(\text { by Holder inequality }) \leq \delta_{m \rightarrow \infty} \sqrt{\left|S_{m}^{(0, \epsilon)}\right|}} .
\end{aligned}
$$

Here $\left|S_{m}^{(0, \epsilon)}\right|$ denotes the area of $S_{m}^{(0, \epsilon)}$. Recall that, for any $m \in \mathbb{N} \cup \infty, \lim _{\epsilon \rightarrow 0}\left|S_{m}^{(0, \epsilon)}\right|=0$. So for $m \geq 1$ and ϵ sufficiently small:

$$
\left|\int_{S_{\infty}^{[\epsilon, \infty)}} \phi_{\infty}\right|<\delta \quad \text { and } \quad\left|S_{m}^{(0, \epsilon)}\right|<\delta .
$$

Finally, taking ϵ to be sufficiently small, we calculate:

$$
\left|\int_{S_{\infty}} \phi_{\infty}\right| \leq\left|\int_{S_{\infty}^{(\epsilon, \infty)}} \phi_{\infty}\right|+\left|\int_{S_{\infty}^{(0, \epsilon)}} \phi_{\infty}\right| \leq \delta+\sqrt{\left|S_{\infty}^{(0, \epsilon)}\right|\left\|\phi_{S_{\infty}}\right\|_{S_{\infty}^{(0, \epsilon)}} \leq 2 \delta, ~}
$$

since $\left\|\phi_{S_{\infty}}\right\|_{S_{\infty}^{(0, \epsilon)}}<\left\|\phi_{S_{\infty}}\right\|=1$. Since δ is arbitrary we conclude that $\int_{S_{\infty}} \phi_{\infty}=0$. Hence ϕ_{∞} has L^{2}-norm 1 and mean zero.

Since ϕ_{∞} has L^{2}-norm 1 at least one of the two constant values of ϕ_{∞} on the two components of S_{∞} is non-zero. Since ϕ_{∞} has mean zero both of these values are non-zero with opposite sign.

As the length of γ_{i}^{m} tends to zero, we may assume that the collar neighborhood C_{i}^{m} of γ_{i}^{m} with two boundary components of length 1 embeds in S_{m} and $\left(C_{i}^{m}\right)_{i=1}^{k}$ are mutually disjoint. At this point we recall that G is minimal in the sense that no proper subset of G can separate S. Hence not only $S_{m} \backslash \cup_{i=1}^{k}\left(C_{i}^{m}\right)$ separates S in exactly two components but also no proper sub-collection of $\left(C_{i}^{m}\right)_{i=1}^{k}$ can separate S_{m}. In particular, for each i, the limits of the two components of ∂C_{i}^{m} belong to the two different components of S_{∞}. Using Lemma 3.3 let us denote the limits of these two boundary sets by $B_{i}^{\infty}(+)$ and $B_{i}^{\infty}(-)$ such that $\left.\phi_{\infty}\right|_{B_{i}^{\infty}(+)}>0$ and $\left.\phi_{\infty}\right|_{B_{i}^{\infty}(-)}<0$. Correspondingly denote the two components of ∂C_{i}^{m} by $B_{i}^{m}(+)$ and $B_{i}^{m}(-)$ such that $B_{i}^{\infty}(\pm)$ is the limit of $B_{i}^{m}(\pm)$ respectively. By the uniform convergence of $\phi_{S_{m}}$ to ϕ_{∞} over compacta we conclude that, for sufficiently large $m,\left.\phi_{S_{m}}\right|_{B_{i}^{m}(+)}>0$ and $\left.\phi_{S_{m}}\right|_{B_{i}^{m}(-)}<0$. Hence, for m sufficiently large, at least one component of $\mathcal{Z}\left(\phi_{S_{m}}\right)$ is contained in C_{i}^{m}.

Let Z_{i} denote the union of the components of $\mathcal{Z}\left(\phi_{S_{m}}\right)$ that are contained in C_{i}^{m}. Let α be a simple closed loop in Z_{i}. Since $\pi_{1}\left(C_{i}^{m}\right)$ is \mathbb{Z} there are only two possibilities for α. Either it bounds a disc in C_{i}^{m} or it is homotopic to γ_{i}^{m}. Since $\lambda_{1}\left(S_{m}\right)$ is small, each component of $S_{m} \backslash \mathcal{Z}\left(\phi_{S_{m}}\right)$ has negative Euler characteristic by Lemma 2.1. This discards the possibility that α bounds a disc in C_{i}^{m}. Hence α is homotopic to γ_{i}^{m}. Let β be another simple closed loop in Z_{i}. Then β is also homotopic to γ_{i}^{m} implying that one of the components of $S_{m} \backslash \mathcal{Z}\left(\phi_{S_{m}}\right)$ has non-negative Euler characteristic. This leaves us with the observation that each C_{i}^{m} contains exactly one loop α_{i}^{m} from $\mathcal{Z}\left(\phi_{S_{m}}\right)$. By remark $2.1 \alpha_{i}^{m}$ is in fact smooth. Therefore we have an isotopy of S that sends α_{i}^{m} to γ_{i}^{m}. Combining these isotopies we obtain that $\mathcal{Z}\left(\phi_{S_{m}}\right)$ is isotopic to $\left(\gamma_{i}^{m}\right)_{i=1}^{k}$.

It remains to show that $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ is unbounded. We argue by contradiction and assume that $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ is bounded. Then we have $\epsilon>0$ such that $\mathcal{B}_{2}\left(\frac{1}{4}\right)$ is contained in the compact set $\mathcal{I}_{\epsilon}=\left\{S \in \mathcal{M}_{2}: s(S) \geq \epsilon\right\}[1]$. Now applying Proposition 3.1 obtain S_{1} and S_{2} in \mathcal{M}_{2} such
that $s\left(S_{i}\right)<\epsilon, \lambda_{1}\left(S_{i}\right)<\frac{1}{4}$ is simple and the nodal set $\mathcal{Z}_{S_{1}}$ of $\lambda_{1}\left(S_{1}\right)$-eigenfunctions is not isotopic to the nodal set $\mathcal{Z}_{S_{2}}$ of $\lambda_{1}\left(S_{2}\right)$-eigenfunctions. On the other hand, since $\mathcal{M}_{2} \backslash \mathcal{I}_{\epsilon}$ is path connected (see Lemma 5.3) we may have a path β in $\mathcal{M}_{2} \backslash \mathcal{I}_{\epsilon} \subset \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ that joins S_{1} and S_{2}. By the last inclusion $\beta \subset \mathcal{M}_{2} \backslash \mathcal{B}_{2}\left(\frac{1}{4}\right)$ we get that λ_{1} is simple along β and we may apply Lemma 3.2 to obtain that the nodal set of λ_{1}-eigenfunctions is constant, up to isotopy, along β. In particular, $\mathcal{Z}_{S_{1}}$ is isotopic to $\mathcal{Z}_{S_{2}}$, a contradiction.

3.1 Proof of Theorem 1.3

The case $(g, n)=(2,0)$ is the content of the above theorem. It remains to prove Theorem 1.3 for $(g, n)=(1,2)$ and $(0,4)$. For the rest of the proof we refer to the pair (g, n) for only these two cases. We argue by contradiction and assume that $\mathcal{M}_{g, n} \backslash \mathcal{C}_{g, n}\left(\frac{1}{4}\right)$ is connected. By definition $\lambda_{1}(S)<\frac{1}{4}$ for any $S \in \mathcal{M}_{g, n} \backslash \mathcal{C}_{g, n}\left(\frac{1}{4}\right)$. Hence $\lambda_{1}(S)$ is an eigenvalue and by [21] it is the only non-zero small eigenvalue of S. Hence the nodal set \mathcal{Z}_{S} of $\lambda_{1}(S)$-eigenfunctions is defined without any ambiguity. Let ϕ_{S} be a $\lambda_{1}(S)$-eigenfunction with nodal set $\mathcal{Z}\left(\phi_{S}\right)=\mathcal{Z}_{S}$. Denote by \bar{S} the surface obtained from S by filling in its punctures and by $\overline{\mathcal{Z}\left(\phi_{S}\right)}$ the closure of $\mathcal{Z}\left(\phi_{S}\right)$ in \bar{S}. By Lemma $2.1 \overline{\mathcal{Z}\left(\phi_{S}\right)}$ is a finite graph without any isolated or free vertex. Now the Euler-Poincaré formula (2.2) applied to the graph $\overline{\mathcal{Z}\left(\phi_{S}\right)}$ provides the equality

$$
\begin{equation*}
\chi(\bar{S})-k=\chi\left(\bar{S} \backslash \overline{\mathcal{Z}\left(\phi_{S}\right)}\right)+\chi\left(\overline{\mathcal{Z}\left(\phi_{S}\right)}\right) \tag{3.2}
\end{equation*}
$$

where k is the number of punctures of S that do not lie on $\overline{\mathcal{Z}\left(\phi_{S}\right)}$. By Lemma 2.1 each component of $\bar{S} \backslash \overline{\mathcal{Z}\left(\phi_{S}\right)}$ has negative Euler characteristic and so $\chi\left(\bar{S} \backslash \overline{\mathcal{Z}\left(\phi_{S}\right)}\right) \leq-2$. Recall that the Euler characteristic of a finite graph without any isolated or free vertex is always ≤ 0. Now, for $(g, n)=(1,2), \chi(\bar{S})=0$ and so we have the only possibility $k=2$ and $\chi\left(\overline{\mathcal{Z}\left(\phi_{S}\right)}\right)=0$. Also, for $(g, n)=(0,4), \chi(\bar{S})=2$ leaves us with the only possibility $k=4$ and $\underline{\chi\left(\overline{\mathcal{Z}\left(\phi_{S}\right)}\right)}=0$. Hence, in both cases, none of the punctures of S lie on $\overline{\mathcal{Z}\left(\phi_{S}\right)}$. In particular, $\mathcal{Z}\left(\phi_{S}\right)=\mathcal{Z}\left(\phi_{S}\right)$ is a compact subset of S. Since $\chi\left(\mathcal{Z}\left(\phi_{S}\right)\right)=0$ we conclude that $\mathcal{Z}\left(\phi_{S}\right)$ is a union of simple closed curves in S. Following arguments similar to those in the genus two case we obtain the following description.

Lemma 3.4 Let $S \in \mathcal{M}_{g, n} \backslash \mathcal{C}_{g, n}\left(\frac{1}{4}\right)$.
(i) If $(g, n)=(1,2)$ then $\mathcal{Z}_{S}=\mathcal{Z}\left(\phi_{S}\right)$ consists of either exactly one simple closed curve or two simple closed curves. In the first case \mathcal{Z}_{S} divides S into two components one of which is a surface of genus one with a copy of \mathcal{Z}_{S} as its boundary and the other one is a twice punctured sphere with a copy of \mathcal{Z}_{S} as its boundary. In the last case \mathcal{Z}_{S} divides S into two components each of which is a once punctured sphere with two boundary components coming from \mathcal{Z}_{S}.
(ii) If $(g, n)=(0,4)$ then \mathcal{Z}_{S} consists of exactly one simple closed curve (there are two possibilities for this up to isotopy) that separates S into two components each of which is a twice punctured sphere with one boundary component coming from \mathcal{Z}_{S}.

Next we have the following modified version of Lemma 3.2. Let $S \in \mathcal{M}_{g, n} \backslash \mathcal{C}_{g, n}\left(\frac{1}{4}\right)$ with nodal set \mathcal{Z}_{S} of $\lambda_{1}(S)$-eigenfunctions.

Lemma 3.5 There exists a neighborhood $\mathcal{N}(S)$ of S in $\mathcal{M}_{g, n}$ such that $\lambda_{1}\left(S^{\prime}\right)$ is simple for any $S^{\prime} \in \mathcal{N}(S)$ and the nodal set $\mathcal{Z}_{S^{\prime}}$ is isotopic to \mathcal{Z}_{S}.

Proof By assumption $\lambda_{1}(S)<\frac{1}{4}$ and so λ_{1} defines a continuous function in a neighborhood of S by [12](see also [9,19]). Hence we have a neighborhood $\mathcal{N}^{\prime}(S) \subset \mathcal{M}_{g, n} \backslash \mathcal{C}_{g, n}\left(\frac{1}{4}\right)$ of S.

Fig. 2 Cover

In particular, for $S^{\prime} \in \mathcal{N}^{\prime}(S)$, the nodal set $\mathcal{Z}_{S^{\prime}}$ of $\lambda_{1}\left(S^{\prime}\right)$-eigenfunctions has the description in Lemma 3.4. Let ϕ_{S} be a $\lambda_{1}(S)$-eigenfunction. Now consider a tubular neighborhood \mathcal{T}_{S} of \mathcal{Z}_{S} in S such that $S \backslash \mathcal{T}_{S}$ has two components S^{+}and S^{-}with $\left.\phi_{S}\right|_{S^{+}}>0$ and $\left.\phi_{S}\right|_{S^{-}}<0$. Furthermore, using Lemma 3.4 we assume that the boundary components $\partial S^{ \pm}$of $S^{ \pm}$are disjoint union of simple closed curves.

Now, as λ_{1} is simple and $<\frac{1}{4}$ on $\mathcal{N}^{\prime}(S)$, by [12], for any compact subset K of S, one can find $\lambda_{1}\left(S^{\prime}\right)$-eigenfunctions $\phi_{S^{\prime}}$ such that the map $\Phi: K \times \mathcal{N}^{\prime}(S) \rightarrow \mathbb{R}$ given by $\Phi\left(x, S^{\prime}\right)=\phi_{S^{\prime}}(x)$ is continuous. Considering $K=\partial S^{+} \cup \partial S^{-}$we obtain a neighborhood $\mathcal{N}(S) \subset \mathcal{N}^{\prime}(S)$ of S such that for any $S^{\prime} \in \mathcal{N}(S):\left.\phi_{S^{\prime}}\right|_{\partial S^{+}}>0$ and $\left.\phi_{S^{\prime}}\right|_{\partial S^{-}}<0$. In particular, $\mathcal{Z}\left(\phi_{S^{\prime}}\right) \subset \mathcal{T}_{S}$ for any $S^{\prime} \in \mathcal{N}(S)$. Finally by the description of $\mathcal{Z}_{S^{\prime}}=\mathcal{Z}\left(\phi_{S^{\prime}}\right)$ in Lemma 3.4 we obtain the lemma.

Continuation of proof of Theorem 1.3 Since by our assumption $\mathcal{M}_{g, n} \backslash \mathcal{C}_{g, n}\left(\frac{1}{4}\right)$ is connected the above claim implies that only one of the two possibilities in Lemma 3.4 can actually occur. This is a contradiction to Proposition 3.1.

Now we show that $\mathcal{C}_{1,2}\left(\frac{1}{4}\right)$ is unbounded. We argue by contradiction and assume that $\mathcal{C}_{1,2}\left(\frac{1}{4}\right)$ is bounded. Then we have $\epsilon>0$ such that $\mathcal{C}_{1,2}\left(\frac{1}{4}\right)$ is contained in the compact set $\mathcal{I}_{\epsilon}=\left\{S \in \mathcal{M}_{1,2}: s(S) \geq \epsilon\right\}$ [1]. Applying Lemma 3.1 we obtain S_{1} and S_{2} in $\mathcal{M}_{1,2}$ such that $s\left(S_{i}\right)<\epsilon, \lambda_{1}\left(S_{i}\right)<\frac{1}{4}$ is simple and the nodal set $\mathcal{Z}_{S_{1}}$ of $\lambda_{1}\left(S_{1}\right)$-eigenfunctions is not isotopic to the nodal set $\mathcal{Z}_{S_{2}}$ of $\lambda_{1}\left(S_{2}\right)$-eigenfunctions. On the other hand, since $\mathcal{M}_{1,2} \backslash \mathcal{I}_{\epsilon}$ is path connected (see Lemma 5.3) we may have a path β in $\mathcal{M}_{1,2} \backslash \mathcal{I}_{\epsilon} \subset \mathcal{M}_{1,2} \backslash \mathcal{C}_{1,2}\left(\frac{1}{4}\right)$ that joins S_{1} and S_{2}. By the last inclusion $\beta \subset \mathcal{M}_{2} \backslash \mathcal{C}_{1,2}\left(\frac{1}{4}\right)$ we get that λ_{1} is simple along β and we may apply Lemma 3.2 to obtain that $\mathcal{Z}_{S_{1}}$ is isotopic to $\mathcal{Z}_{S_{2}}$, a contradiction (Fig. 2).

4 Branches of eigenvalues

In this section we consider branches of eigenvalues along paths in \mathcal{T}_{g}. Main purpose of doing so is that the multiplicity of λ_{i}, in particular λ_{1}, is not one in general (see Theorem 1.6). Therefore along 'nice' paths in \mathcal{T}_{g} the functions λ_{i} may not be 'nice' enough (see Sect. 1.1). However, Theorem 1.4 shows that up to certain choice at points of multiplicity λ_{i} 's are in fact
'nice'. This 'nice' choice makes λ_{i} into a branch of eigenvalues (see Sect. 1.1). Theorem 1.5 says that if we restrict ourselves to branches of eigenvalues then we have a positive answer to Conjecture 1.2, namely there are branches of eigenvalues that start as λ_{1} and becomes more than $\frac{1}{4}$.

Proof (Proof of Theorem 1.5) We begin by explaining the embedding $\Pi: \mathcal{T}_{2} \rightarrow \mathcal{T}_{g}$ (see the next figure cover). Let S be the closed hyperbolic surface of genus two and $\alpha, \beta, \gamma, \delta$ are four geodesics on S as in the picture below. Now cut S along δ to obtain a hyperbolic surface S^{*} with genus one and two geodesic boundaries (each a copy of δ). Consider $g-1$ many copies of S^{*} and glue them along their consecutive boundaries after arranging them along a circle as in the picture below. Let $\Pi(S)$ denote the resulting hyperbolic surface.

Now take a geodesic pants decomposition $\left(\xi_{i}\right)_{i=1,2,3}$ of S involving $\delta=\xi_{3}$ and consider the Fenchel-Nielsen coordinates $\left(l_{i}, \theta_{i}\right)_{i=1,2,3}$ on \mathcal{T}_{2} with respect to this pants decomposition. Here $l_{i}=l\left(\xi_{i}\right)$ is the length of the closed geodesic ξ_{i} and θ_{i} is the twist parameter at ξ_{i}. The images of $\left(\xi_{i}\right)_{i=1,2,3}$ in $\Pi(S),\left(\xi_{i}^{j}\right)_{i=1,2,3 ; j=1,2, \ldots, g-1}$ is a geodesic pants decomposition of $\Pi(S)$. Consider the the Fenchel-Nielsen coordinates $\left(l_{i}^{j}, \theta_{i}^{j}\right)_{i=1,2,3 ; j=1,2, \ldots, g-1}$ on \mathcal{T}_{g} with respect to this pants decomposition. As before, $l_{i}^{j}=l\left(\xi_{i}^{j}\right)$ is the length of the closed geodesic ξ_{i}^{j} and θ_{i}^{j} is the twist parameter at ξ_{i}^{j}. With respect to these pants decompositions Π is expressed as

$$
\begin{equation*}
\left(l_{1}, l_{2}, l_{3}, \theta_{1}, \theta_{2}, \theta_{3}\right) \rightarrow(\underbrace{l_{1}, l_{2}, l_{3}, \theta_{1}, \theta_{2}, \theta_{3}}_{1}, \ldots, \underbrace{l_{1}, l_{2}, l_{3}, \theta_{1}, \theta_{2}, \theta_{3}}_{g-1}) . \tag{4.1}
\end{equation*}
$$

This is an analytic map and the image $\Pi(S)$ of any $S \in \mathcal{T}_{2}$ has an isometry τ of order $(g-1)$ that sends one 6-tuple $\left(l_{1}, l_{2}, l_{3}, \theta_{1}, \theta_{2}, \theta_{3}\right)$ to the next one. Also $\Pi(S) / \tau$ is isometric to S i.e. $\Pi(S)$ is a $(g-1)$ sheeted covering of S. Hence each eigenvalue of S is also an eigenvalue of $\Pi(S)$. In particular, a branch λ_{t} of eigenvalues in \mathcal{T}_{2} along $\eta(t)$ is a branch of eigenvalues in \mathcal{T}_{g} along $\Pi(\eta(t))$.

To finish the proof we need only to find $S \in \mathcal{T}_{2}$ such that $\lambda_{1}(S)=\lambda_{1}(\Pi(S))$. Once we find such a S, we can consider any analytic path η in \mathcal{T}_{2} such that $\eta(o)=S$ and $\lambda_{1}(\eta(1))>\frac{1}{4}$. Then the branch of eigenvalues $\lambda_{t}=\lambda_{1}(\eta(t))$ along $\Pi(\eta(t))$ would be a branch that we seek.

To show this we employ the technique in Proposition 3.1. Let S_{n} be a sequence of surfaces of genus two on which the lengths of the geodesics α, β and γ tends to zero. In particular, $S_{n} \rightarrow S_{\infty} \in \mathcal{M}_{0,3} \cup \mathcal{M}_{0,3}$ implying $\lambda_{1}\left(S_{n}\right) \rightarrow 0$ and $\lambda_{2}\left(S_{n}\right) \nrightarrow 0$. The sequence $\Pi\left(S_{n}\right)$ converges to a surface in $\mathcal{M}_{0, g+1} \cup \mathcal{M}_{0, g+1}$ and so $\lambda_{1}\left(\Pi\left(S_{n}\right)\right) \rightarrow 0$ and $\lambda_{2}\left(\Pi\left(S_{n}\right)\right) \nrightarrow 0$. So for large $n, \lambda_{1}\left(S_{n}\right)<\lambda_{2}\left(\Pi\left(S_{n}\right)\right)$ implying $\lambda_{1}\left(S_{n}\right)=\lambda_{1}\left(\Pi\left(S_{n}\right)\right)$.

5 Punctured spheres

We begin this section by recapitulating the ideas in [5]. By purely number theoretic methods Atle Selberg showed that for any congruence subgroup Γ of $\operatorname{SL}(2, \mathbb{Z}), \lambda_{1}(\mathbb{H} / \Gamma) \geq \frac{3}{16}$. The purpose in [5] was to construct explicit closed hyperbolic surfaces with λ_{1} close to $\frac{3}{16}$. To achieve this goal the authors of [5] considered principal congruence subgroups Γ_{n} (see introduction) and corresponding finite area hyperbolic surfaces \mathbb{H} / Γ_{n}. Then they replaced the cusps in \mathbb{H} / Γ_{n}, which is even in number, by closed geodesics of small length t and glued them in pairs (see [5] for details). The surface S_{t} obtained in this way is closed, their genus g is independent of t and as $t \rightarrow 0, S_{t} \rightarrow \mathbb{H} / \Gamma_{n}$ in the compactification of the moduli space
\mathcal{M}_{g}. Rest of the proof showed that λ_{1} is lower semi-continuous over the family S_{t}. A novel modification of this approach in [6] together with the result of Kim and Sarnak provides Theorem 1.1.

Limiting properties of eigenvalues over degenerating family of hyperbolic metrics have been studied well in the literature (to name a few Hejhal [12], Colbois and Courtois [9], Ji [16], Wolpert [24], Judge [17]) (see also [19, Theorem 2]). These limiting results can be summarized as:

Theorem 5.1 Let $\left(S_{m}\right)$ be a sequence of hyperbolic surfaces in $\mathcal{M}_{g, n}$ that converges to a finite area hyperbolic surface $S \in \partial \mathcal{M}_{g, n}$. Let $\left(\lambda_{m}, \phi_{m}\right)$ be an eigenpair of S_{m} such that $\lambda_{m} \rightarrow \lambda<\infty$. Then, up to extracting a subsequence and up to rescaling, the sequence (ϕ_{m}) converges to a generalized eigenfunction, uniformly over compacta, if one of the following is true (i) $n=0$ ([16]) (ii) $n \neq 0$ and $\lambda<\frac{1}{4}$ ([9,12]) (iii) $n \neq 0$ and $\lambda>\frac{1}{4}$ ([24]) (iii) $n \neq 0, \lambda_{m} \leq \frac{1}{4}$ and ϕ_{m} is cuspidal ([19]).

Recall that there is a copy of $\mathcal{M}_{0,2 g+n}$ in the compactification $\overline{\mathcal{M}_{g, n}}$ of $\mathcal{M}_{g, n}$. The ideas in [5] along with above limiting results imply the following.

Lemma 5.1 For any pair $(g, n), \Lambda_{1}(g, n) \geq \Lambda_{1}(0,2 g+n)$.
Motivated by this we focus on $\Lambda_{1}(0, n)$. Although we would not be able to prove Conjecture 1.2 we have Theorem 1.7 on the multiplicity of λ_{1} which we prove now.

5.1 Proof of Theorem 1.7

Let S be a finite area hyperbolic surface of genus 0 and assume that $\lambda_{1}(S)$ is a small eigenvalue. Following the discussion in Sect. $1.2 \lambda_{1}(S)<\frac{1}{4}$. Let \bar{S} denote the closed surface obtained by filling in the punctures of S. Let ϕ be a $\lambda_{1}(S)$-eigenfunction. Then the closure $\overline{\mathcal{Z}(\phi)}$ of the nodal set $\mathcal{Z}(\phi)$ of ϕ is a finite graph in \bar{S} by Lemma 2.1. In particular, $\overline{\mathcal{Z}(\phi)}$ is a union of closed loops (not necessarily disjoint) in \bar{S}. Observe also that the number of components of $\bar{S} \backslash \overline{\mathcal{Z}(\phi)}$ is same as that of $S \backslash \mathcal{Z}(\phi)$.

Now let $\overline{\mathcal{Z}(\phi)}$ consists of more than one closed loop. Then by Jordan curve theorem the number of components of $\bar{S} \backslash \overline{\mathcal{Z}(\phi)}$ is at least three. This is a contradiction to Courant's nodal domain Theorem 2.2 which says that a $\lambda_{1}(S)$-eigenfunction can have at most two nodal domains. Hence we conclude that $\overline{\mathcal{Z}(\phi)}$ consists of exactly one closed loop. In particular, we have the following description of $\mathcal{Z}(\phi)$ at any puncture.
Lemma 5.2 If one of the punctures p of S is in $\overline{\mathcal{Z}(\phi)}$ then the number of arcs in $\overline{\mathcal{Z}(\phi)}$ emanating from p is at most two.

Let $\lambda_{1}(S)=s(1-s)$ with $s \in\left(\frac{1}{2}, 1\right]$. Let p be one of the punctures of S. Let \mathcal{P}^{t} be a cusp around p (see Sect. 2.3). Recall that S being a punctured sphere, does not have any small cuspidal eigenvalue [13,20]. Thus any $\lambda_{1}(S)$-eigenfunction ϕ is a linear combination of residues of Eisenstein series (see [14]). It follows from [14, Thorem 6.9] that the y^{s} term can not occur in the Fourier development (see (2.5) and (2.6)) of these residues in \mathcal{P}^{t}. Hence ϕ has a Fourier development in \mathcal{P}^{t} of the form:

$$
\begin{equation*}
\phi(x, y)=\phi_{0} y^{1-s}+\sum_{j \geq 1} \sqrt{\frac{2 j y}{\pi}} K_{s-\frac{1}{2}}(j y)\left(\phi_{j}^{e} \cos (j . x)+\phi_{j}^{o} \sin (j . x)\right) . \tag{5.1}
\end{equation*}
$$

Now we consider the space \mathcal{E}_{1} generated by $\lambda_{1}(S)$-eigenfunctions. The map $\pi: \mathcal{E}_{1} \rightarrow \mathbb{R}^{3}$ given by $\pi(\phi)=\left(\phi_{0}, \phi_{1}^{e}, \phi_{1}^{o}\right)$ is linear and so if $\operatorname{dim} \mathcal{E}_{1}>3$ then $\operatorname{ker} \pi$ is non-empty. Let
$\psi \in \operatorname{ker} \pi$ i.e. $\psi_{0}=\psi_{1}^{e}=\psi_{1}^{o}=0$. Then by the result [17] of Judge, the number of arcs in $\mathcal{Z}(\psi)$ emanating from p is at least four, a contradiction to Lemma 5.2.

Acknowledgments I would like to thank my advisor Jean-Pierre Otal for all his help starting from suggesting the problem to me. I am thankful to Peter Buser and Werner Ballmann for the discussions that I had with them on this problem. Finally I would like to thank the Max Planck Institute for Mathematics in Bonn for its support and hospitality.

Appendix

For the convenience of the reader we give a proof of the fact that, for $(g, n) \neq(0,4),(1,1)$, the complement $\mathcal{M}_{g, n} \backslash \mathcal{I}_{\epsilon}$ of the compact set $\mathcal{I}_{\epsilon}=\left\{S \in \mathcal{M}_{g, n}: s(S) \geq \epsilon\right\}$ [1] is path connected.

Lemma 5.3 For any $(g, n) \neq(0,4),(1,1)$ with $2 g-2+n>0$ and any $\epsilon>0$ the set $\mathcal{M}_{g, n} \backslash \mathcal{I}_{\epsilon}$ is path connected.

Proof Let S_{1} and S_{2} be two surfaces in $\mathcal{M}_{g, n}$ such that $s\left(S_{i}\right)<\epsilon$. So we have simple closed geodesics γ_{1} on S_{1} and γ_{2} on S_{2} such that the length $l_{\gamma_{i}}$ of γ_{i} is $<\epsilon$. Recall that it has always been our practise to treat $\mathcal{M}_{g, n}$ as a subset of all possible metrics on a fixed surface S and the geodesics are understood to be parametric curves on S that satisfy certain differential equations provided by the metric.

With this understanding let us first assume that γ_{1} does not intersect γ_{2}. So we may consider a pants decomposition P of S containing both γ_{1} and γ_{2}. Let the Fenchel-Nielsen coordinates of S_{i} be given by $\left(l_{j}\left(S_{i}\right), \theta_{j}\left(S_{i}\right)\right)_{j=1}^{3 g-3+n}$. Here l_{1}, l_{2} are the length parameters along γ_{1}, γ_{2} and θ_{1}, θ_{2} are twist parameters along γ_{1}, γ_{2}. Then consider the path $\beta:[0,1] \rightarrow \mathcal{T}_{2}$ given by:

$$
\begin{aligned}
& l_{1}(\beta(t))= \begin{cases}l_{1}\left(S_{1}\right) & \text { if } t \in\left[0, \frac{1}{2}\right], \\
2(1-t) l_{1}\left(S_{1}\right)+(2 t-1) l_{1}\left(S_{2}\right) & \text { if } t \in\left[\frac{1}{2}, 1\right]\end{cases} \\
& l_{2}(\beta(t))= \begin{cases}(1-2 t) l_{2}\left(S_{1}\right)+2 t l_{2}\left(S_{2}\right) & \text { if } t \in\left[0, \frac{1}{2}\right], \\
l_{2}\left(S_{2}\right) & \text { if } t \in\left[\frac{1}{2}, 1\right]\end{cases}
\end{aligned}
$$

$l_{3}(\beta(t))=(1-t) l_{3}\left(S_{1}\right)+t l_{3}\left(S_{2}\right)$ and $\theta_{j}(\beta(t))=(1-t) \theta_{j}\left(S_{1}\right)+t \theta_{j}\left(S_{2}\right)$. Since $l_{1}(\beta(t))<\epsilon$ for $t \in\left[0, \frac{1}{2}\right]$ and $l_{2}(\beta(t))<\epsilon$ for $t \in\left[\frac{1}{2}, 1\right]$ we observe that $s(\beta(t))<\epsilon$ for all t. The image of β under the quotient map $\mathcal{T}_{g, n} \rightarrow \mathcal{M}_{g, n}$ produces the required path joining S_{1} and S_{2}.

Now let us assume that γ_{1} intersects γ_{2}. Let γ be a simple closed geodesic that does not intersect γ_{1} and γ_{2}. By our assumption i.e. $(g, n) \neq(0,4),(1,1)$ such a geodesic exists. Then by the procedure described above both S_{1} and S_{2} can be joined by a path in $\mathcal{M}_{g, n} \backslash \mathcal{I}_{\epsilon}$ to a surface on which γ has length $<\epsilon$. This finishes the proof.

References

1. Bers, L.: A remark on Mumford's compactness theorem. Isr. J. Math. 12, 400-407 (1972)
2. Buser, P.: Cubic graphs and the first eigenvalue of a Riemann surface. Math. Z. 162, 87-99 (1978)
3. Buser, P.: On the bipartition of graphs. Discrete Appl. Math. 9, 105-109 (1984)
4. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, vol. 106. Birkhäuser Boston Inc, Boston (1992)
5. Burger, M., Buser, P., Dodziuk, J.: Riemann surfaces of large genus and large λ_{1}. Geometry and analysis on manifolds. In: Sunada, T. (ed.) Lecture Notes in Mathematics, vol. 1339, pp. 54-63. Springer, Berlin (1988)
6. Brooks, R., Makover, E.: Riemann surfaces with large first eigenvalue. J. Anal. Math. 83, 243-258 (2001)
7. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic Press, London (1984)
8. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51, 43-55 (1976)
9. Colbois, B., Courtois, G.: Les valeurs propres inférieures á $1 / 4$ des surfaces de Riemann de petit rayon d'injectivité. Comment. Math. Helv. 64(3), 349-362 (1989)
10. Colbois, B., de Verdire, Y.C.: Sur la multiplicit de la premire valeur propre d'une surface de Riemann courbure constante (French) (Multiplicity of the first eigenvalue of a Riemann surface with constant curvature). Comment. Math. Helv. 63(2), 194-208 (1988)
11. Hatcher, A.: Algebraic Topology (English summary), xii+544 pp. Cambridge University Press, Cambridge (2002). ISBN: 0-521-79160-X
12. Hejhal, D.: Regular b-groups, degenerating Riemann surfaces and spectral theory. Mem. Am. Math. Soc 88, 437 (1990)
13. Huxley, M.N.: Cheeger's inequality with a boundary term. Comment. Math. Helv. 58, 347-354 (1983)
14. Iwaniec, H.: Introduction to the Spectral Theory of Automorphic Forms. Bibl. Rev. Mat. Iberoamericana, Revista Matemática Iberoamericana, Madrid (1995)
15. Jenni, F.: Uber den ersten Eigenwert des Laplace-Operators auf ausgewhlten Beispielen kompakter Riemannscher Flchen (German) [On the first eigenvalue of the Laplace operator on selected examples of compact Riemann surfaces]. Comment. Math. Helv. 59(2), 193-203 (1984)
16. Ji, L.: Spectral degeneration of hyperbolic Riemann surfaces. J. Differ. Geom. 38(2), 263-313 (1993)
17. Judge, C.: The nodal set of a finite sum of Maass cusp forms is a graph. In: Proceedings of Symposia in Pure Mathematics, vol. 84 (2012)
18. Kim, H.H.: Functoriality for the exterior square of $G L_{4}$ and symmetric fourth of $G L_{2}$. J. Am. Math. Soc. 16(1), 139-183 (2003)
19. Mondal, S.: Topological bounds on the number of cuspidal eigenvalues of finite area hyperbolic surfaces. Int. Math. Res. Not. (to appear)
20. Otal, J.-P.: Three topological properties of small eigenfunctions on hyperbolic surfaces. In: Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265. Birkhäuser, Bassel (2008)
21. Otal, J.-P., Rosas, E.: Pour toute surface hyperbolique de genre g, $\lambda_{2 g-2}>1 / 4$. Duke Math. J. 150(1), 101-115 (2009)
22. Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proceedings of the Symposium on Pure Mathematics VII, Am. Math. Soc., pp. 1-15 (1965)
23. Strohmaier, A., Uski, V.: An algorithm for the computation of eigenvalues, spectral zeta functions and zeta-determinants on hyperbolic surfaces. Commun. Math. Phys. 317(3), 827-869 (2013)
24. Wolpert, S.A.: Spectral limits for hyperbolic surface, I. Invent. Math. 108, 67-89 (1992)

[^0]: Sugata Mondal
 sugata.mondal@mpim-bonn.mpg.de
 1 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

