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Abstract We apply topological methods to study the smallest non-zero number λ1 in the
spectrum of the Laplacian on finite area hyperbolic surfaces. For closed hyperbolic surfaces
of genus two we show that the set {S ∈ M2 : λ1(S) > 1

4 } is unbounded and disconnects the
moduli spaceM2. Using this, for genus g ≥ 3, we show the existence of eigenbranches that
start as λ1 and eventually becomes > 1

4 .
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1 Introduction

In this paper we identify hyperbolic surfaces with quotients of the Poincaré upper halfplane
H by discrete torsion free subgroups of PSL(2, R) called Fuchsian groups. The Laplacian on
H is the differential operator Δ which associates to a real-valued C2-function f the function

Δ f (z) = −y2
(

∂2 f

∂x2
+ ∂2 f

∂y2

)
. (1.1)

For any Fuchsian group Γ , the induced differential operator on S = H/Γ , Δ = ΔS is
called the Laplacian on S. It is a non-negative operator whose spectrum spec(Δ) is contained
in a smallest interval [λ0(S),∞) ⊂ R

+ ∪{0}with λ0(S) ≥ 0. Points in the discrete spectrum
will be referred to as eigenvalues. In particular this means λ ≥ 0 is an eigenvalue if there
exists a non-zero C2-function f ∈ L2(S), called a λ-eigenfunction, such that Δ f = λ f. The
pair (λ, f ) is called an eigenpair. When 0 < λ ≤ 1/4, λ is called a small eigenvalue, f is
called a small eigenfunction and the pair (λ, f ) is called a small eigenpair. Recall that we
consider only real-valued functions and so any eigenfunction is a real-valued function.
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334 S. Mondal

We shall restrict ourselves to hyperbolic surfaces with finite area. Any such surface S is
homeomorphic to a closed Riemann surface S of certain genus g from which some n many
points are removed. In that case S is called a finite area hyperbolic surface of type (g, n).
Each of these n points is called a puncture of S.

The spectrum of the Laplacian of a closed hyperbolic surface S consists of a discrete set:

0 = λ0 < λ1(S) ≤ · · · ≤ λn(S) ≤ · · · ∞ (1.2)

such that λi (S) → ∞ as i → ∞. Each number in the above sequence is repeated according
to its multiplicity as eigenvalue. The number λi (S) is called the i-th eigenvalue of S. The
moduli space of genus g closed hyperbolic surfaces is denoted by Mg . It is known that the
map λi : Mg → R that assigns a surface S ∈ Mg to its i-th eigenvalue λi (S) is continuous
and bounded [4]. Hence

Λi (g) = sup
S∈Mg

λi (S) < ∞. (1.3)

For non-compact hyperbolic surfaces of finite area the spectrum of the Laplacian is more
complicated. It consists of both continuous and discrete components (see [14] for detail).
However, the part of the spectrum lying in [0, 1

4 ) is discrete. Keeping resemblance to the
above definition, for any hyperbolic surface S, let us define λ1(S) to be the smallest positive
number in spec(Δ). In particular, if λ1 < 1

4 then it is an eigenvalue. The function λ1, so
defined, is bounded by 1

4 because S has a continuous spectrum on [ 14 ,∞). As before we
consider the moduli space Mg,n of finite area hyperbolic surfaces of type (g, n) and define

Λ1(g, n) = sup
S∈Mg,n

λ1(S). (1.4)

In [22] Atle Selberg proved that for any congruence subgroup Γ of SL(2, Z)

λ1(H/Γ ) ≥ 3

16
. (1.5)

Recall that a congruence subgroup is a discrete subgroup of SL(2, Z) that contains one of
the Γn where

Γn =
{(

a b
c d

)
∈ SL(2, Z) : a ≡ 1 ≡ d and b ≡ 0 ≡ c (mod n)

}
(1.6)

is the principal congruence subgroup of level n. Moreover he conjectured:

Conjecture 1.1 For any congruence subgroup Γ , λ1(H/Γ ) ≥ 1
4 .

Huxley [13] proved this conjecture for Γn with n ≤ 6. Several attempts have been made
to prove it (see [14, Chapter 11] for details) in the general case. The best known bound is
975
4096 due to Kim and Sarnak [18]. This conjecture motivated, in particular, the question of
our interest:

Question 1.1 Given any genus g ≥ 2 does there exist a closed hyperbolic surface of genus
g with λ1 at least 1

4 ?

A slightly weaker question than the above one would be: Is Λ1(g) ≥ 1
4 ? This question

is studied in [5] by Buser et al. and in [6] by Brooks and Makover. The ideas in [5,6], in the
light of the bound of Kim and Sarnak [18], provide the following.
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Theorem 1.1 Given any ε > 0, there exists Nε ∈ N such that for any g ≥ Nε there exist
closed hyperbolic surfaces of genus g with λ1 ≥ 975

4096 − ε.

The constant 975
4096 in the above theorem can be replaced by 1

4 if Conjecture 1.1 is true.
Hence it is tempting to conjecture:

Conjecture 1.2 For every g ≥ 2 there exists a closed hyperbolic surface of genus g whose
λ1 is at least 1

4 .

Remark 1.1 Observe that even if Selberg’s conjecture (Conjecture 1.1) is true, Theorem 1.1
would not provide a positive answer to Conjecture 1.2. However, it would imply that for
special values of g (see [5]) Λ1(g) ≥ 1

4 and lim infg→∞Λ1(g) ≥ 1
4 .

The existence of genus two hyperbolic surfaces with λ1 > 1
4 has been known in the

literature for sometime [15]. It is known that the Bolza surface has λ1 approximately 3.8
(see [23] for more details). We consider the subset B2(

1
4 ) = {S ∈ M2 : λ1(S) > 1

4 } of the
moduli spaceM2. From the continuity of λ1 it is clear that B2(

1
4 ) is open. Our first result, in

some sense, describes how large the open subset B2(
1
4 ) is.

Theorem 1.2 B2
( 1
4

)
is an unbounded set that disconnects M2.

Sketch of the proof of Theorem 1.2 First we prove that B2(
1
4 ) disconnects M2. For that

we argue by contradiction and assume that M2\B2(
1
4 ) is connected. Now for any S ∈

M2\B2(
1
4 ), λ1(S) is small and hence has multiplicity exactly one by Proposition 1.1. In

particular, the space of λ1(S)-eigenfunctions is one dimensional and so the nodal set ZS

of λ1(S)-eigenfunctions is defined without any ambiguity (see Sect. 2.2). We shall see that
under our assumptions ZS is a disjoint union of simple closed curves. With the help of this
property we shall deduce that ZS is constant, up to isotopy, onM2\B2(

1
4 ). Finally, using an

argument involving geodesic pinching (Proposition 3.1) we shall show that there exist sur-
faces S1 and S2 inM2\B2(

1
4 ) such that ZS1 is not isotopic to ZS2 . This provides the desired

contradiction. The proof of the rest of the theorem uses similar topological arguments.
For finite area hyperbolic surfaces with Euler characteristic −2 the ideas in the above

proof carries over to provide the following.

Theorem 1.3 For any (g, n) with 2g − 2 + n = 2 (i.e. (g, n) = (2, 0), (1, 2) or (0, 4)) the
set Cg,n( 14 ) = {S ∈ Mg,n : λ1(S) ≥ 1

4 } disconnects Mg,n. Moreover for (g, n) = (2, 0)
and (1, 2) it is unbounded.

1.1 Eigenvalue branches

Recall that themoduli spaceMg is the quotient of theTeichmüller spaceTg by theTeichmüller
modular group Mg (see [4]). We are shifting from the moduli space to the Teichmüller space
mainly because we wish to talk about analytic paths which involve coordinates and on Tg

one has the Fenchel–Nielsen coordinates (given a pants decomposition) which is easy to
describe.

Let γ : [0, 1] → T2 be an analytic path. Since, in this case, λ1 is simple as long as small
(by Proposition 1.1), the function λ1(St ) (St = γ (t)) is also analytic (see Theorem 1.4) if
λ1(St ) ≤ 1

4 for all t ∈ [0, 1]. For higher genus λ1 may not be simple even if small (see
Sect. 1.2). Therefore, for an analytic path γ : [0, 1] → Tg , λ1(St ) is continuous but need
not be analytic even if λ1(St ) ≤ 1

4 for all t ∈ [0, 1]. However we have the following result
from [4, Theorem 14.9.3]:
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336 S. Mondal

Theorem 1.4 Let (St )t∈I be a real analytic path inTg. Then there exist real analytic functions
λt

k : I → R such that for each t ∈ I the sequence (λt
k) consist of all eigenvalues of St (listed

with multiplicities, though not in increasing order).

Each function λt
k is called a branch of eigenvalues along St . More precisely

Definition 1.1 Let α : [0, 1] → Tg be an analytic path. An analytic function λt : [0, 1] → R

is called a branch of an eigenvalue along α if, for each t , λt is an eigenvalue of α(t). If
λ0 = λi (α(0)) then we shall say that λt is a branch of eigenvalues along α that starts as λi .
If the underlying path α is fixed then we shall skip referring to it.

Here, instead of considering λ1, we consider branches of eigenvalues that start as λ1 and
modify question 1.1 as:

Question 1.2 For any g ≥ 2 does there exist branches of eigenvalues in Tg that start as λ1

and exceeds 1
4 eventually ?

Fortunately this modified question turns out to be much easier than the original one and
we have a positive answer to it.

Theorem 1.5 For any g ≥ 2 there are branches of eigenvalues in Tg that start as λ1 and
take values strictly bigger than 1

4 .

Recall that T2 can be embedded in Tg as an analytic subset containing surfaces with certain
symmetries (see Sect. 4). The branches in Theorem 1.5 will be obtained by composing the
branches in T2 by the above embedding Π : T2 → Tg . We shall use a geodesic pinching
argument to prove that among these branches there are ones that start as λ1.

1.2 Multiplicity

For any eigenvalue λ of S, the dimension of ker(Δ−λ.1) is called the multiplicity of λ. If the
multiplicity of λ1 were one for all closed hyperbolic surfaces of genus g then Theorem 1.5
would have showed the existence of surfaces with λ1 > 1

4 implying Conjecture 1.2. However
this is not the case and in fact the following is proved in [10]:

Theorem 1.6 For every g ≥ 3 and n ≥ 0 there exists a surface S ∈ Mg,n such that λ1(S)

is small and has multiplicity equal to the integral part of 1+√
8g+1
2 .

For g ≥ 3 the above bound is more than 3. Hence our methods in Theorem 1.2 for g = 2
do not work for g ≥ 3. In [20] the following upper bound on the multiplicity of a small
eigenvalue is proved.

Proposition 1.1 Let S be a finite area hyperbolic surface of type (g, n). Then the multiplicity
of a small eigenvalue of S is at most 2g − 3 + n.

Our last result is an improvement of this result for finite area hyperbolic surfaces of type
(0, n). Recall that for any finite area hyperbolic surface if 1

4 is an eigenvalue then it must be
a cuspidal eigenvalue (see Sect. 2.3). Now, hyperbolic surfaces of type (0, n) can not have
small cuspidal eigenvalues by [20, Proposition 2] (see also [13]). Therefore, for a finite area
hyperbolic surfaces S of type (0, n) if λ1(S) is a small eigenvalue then automatically
λ1(S) < 1

4 .
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On largeness and multiplicity of the first eigenvalue of… 337

Theorem 1.7 Let S be a finite area hyperbolic surface of genus 0. If λ1(S) is a small eigen-
value then the multiplicity of λ1(S) is at most three.

Sketch of proof Let S denote the closed surface obtained by filling in the punctures of S. By
assumption λ1(S) is small. Following the discussion above λ1(S) < 1

4 . Let φ be a λ1(S)-
eigenfunction with nodal set Z(φ). Let Z(φ) be the closure of Z(φ) in S which is a finite
graph by Lemma 2.1.

Using Jordan curve theorem and Courant’s nodal domain theorem (see Sect. 2.2) we
shall deduce the simple description of Z(φ) as a simple closed curve in S. In particular, if
one of the punctures p of S lies on Z(φ) then the number of arcs in Z(φ) emanating from p
is at most two.

Let p be one of the punctures of S. We shall deduce that in any cusp around p any
λ1(S)-eigenfunction φ has a Fourier development of the form:

φ(x, y) = φ0y1−s +
∑
j≥1

√
2 j y

π
Ks− 1

2
( j y)(φe

j cos( j.x) + φo
j sin( j.x)) (1.7)

where λ1(S) = s(1−s)with s ∈ ( 12 , 1] and K is the modified Bessel function of exponential
decay (see Sect. 2.3). Denote the vector space generated by λ1(S)-eigenfunctions by E1 and
consider the map π : E1 → Rn3 given by π(φ) = (φ0, φ

e
1, φ

o
1). This is a linear map and

so if dim E1 > 3 then ker π is non-empty. Let ψ ∈ ker π i.e. ψ0 = ψe
1 = ψo

1 = 0. Then
by the result [17] of Judge, the number of arcs in Z(ψ) emanating from p is at least four, a
contradiction to the above description of Z(φ) at p.

2 Preliminaries

In this section we recall some definitions and results that will be necessary in the later
sections. We begin by some backgrounds from topology where we recall a particular form
of the Euler–Poincaré formula. Then we recall some results on the structure of nodal sets of
eigenfunctions. The last part recalls the Fourier expansion of cusp forms in a cusp.

2.1 Backgrounds from topology

Here we recall some background materials from topology. A (finite) graph G on S consists of
a pair (V, E) where V , called the set of vertices of G, is a finite collection of points of S and
E , called the set of edges of G, is a finite collection of mutually non-intersecting embedded
arcs in S joining the points in V . If an edge e joins two vertices v and w then we say that e
is adjacent to v and w. The total number of edges adjacent to a vertex is called the degree
of the vertex. A vertex is called an isolated vertex if its degree is zero and a free vertex if its
degree is one. It is not very difficult to observe that the Euler characteristic of a finite graph
without any isolated or free vertex is always ≤ 0.

Let G = (V, E) be a graph on S. Since both V and E are finite it is easy to observe
that for any ε > 0 small enough the ε-neighborhood Nε(G) of G has piecewise smooth
boundary and deformation retracts to G. Moreover, any component C of S\Nε(G) is a
deformation retraction of the unique component C ′ of S\G that contains C . Now choose two
such constants ε, δ with δ < ε and consider the decomposition of S into the components of
S\Nδ(G) and Nε(G). Then one can use the Mayer–Vietoris sequence [11, p-149] to observe
that
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338 S. Mondal

χ(S) =
∑

i

χ(Di ) + χ(Nε(G)) (2.1)

where Di runs over the components of S\Nδ(G) and χ(A) denotes the Euler characteristic
of A. Since Nε(G) deformation retracts to G and each component C of S\Nδ(G) is a
deformation retraction of the unique component C ′ of S\G that contains C we obtain

χ(S) =
∑

i

χ(Di ) + χ(G) (2.2)

where Di runs over the components of S\G. This formula is sometimes called the Euler–
Poincaré formula.

2.2 Nodal sets

For any function f : S → R, the set {x ∈ S : f (x) = 0} is called the nodal set Z( f ) of
f . Observe that Z( f ) is invariant under multiplication by non-zero constants i.e. Z( f ) =
Z(c. f ) for any c �= 0. Each component of S\Z( f ) is called a nodal domain of f . In a
neighborhood of a regular point p ∈ Z( f ) (∇p f �= 0) the implicit function theorem implies
that Z( f ) is a smooth curve. In a neighborhood of a critical point p ∈ Z( f ) (∇p f = 0), it
is not so simple to describe Z( f ). When f is an eigenfunction of the Laplacian we have the
following description due to Cheng [8]:

Theorem 2.1 Let S be a surface with a C∞ metric. Then, for any solution of the equation
(Δ − h)φ = 0, h ∈ C∞(S), one has:

(i) Critical points on the nodal set Z(φ) are isolated.
(ii) Any critical point in Z(φ) has a neighborhood N in S which is diffeomorphic to the

disc {z ∈ C : |z| < 1} by a C1-diffeomorphism that sends Z(φ) ∩ N to an equiangular
system of rays.

Remark 2.1 (1) Z(φ) does not contain any isolated or free vertex.
(2) If p ∈ Z(φ) is a critical point of φ then the degree of the graph Z(φ) at p is at least 4.

Hence if a component of Z(φ) is a simple closed loop then it is automatically smooth.

When S is closed Theorem 2.1 implies thatZ(φ) is a finite graph.When S is non-compact
with finite area it implies local finiteness of Z(φ) but not global. In this particular case we
have the following lemma due to Otal [20, Lemma 6] (the second part is [20, Lemma 1])

Lemma 2.1 Let S be a hyperbolic surface with finite area and let φ : S → R be a λ-
eigenfunction with λ ≤ 1

4 . Then the closure of Z(φ) in S is a finite graph without any
isolated or free vertex. Moreover, each nodal domain of φ has negative Euler characteristic.

In particular, Z(φ) is a union of finitely many (not necessarily disjoint) cycles in S that
may contain some of the punctures of S. Next we recall Courant’s nodal domain theorem.

Theorem 2.2 Let S be a closed hyperbolic surface. Then the number of nodal domains of a
λi (S)-eigenfunction can be at most i + 1.

The proof (see [7] or [8]) of this theorem works also for finite area hyperbolic surfaces if
λi < 1

4 . In particular, for a hyperbolic surface S with finite area if λ1(S) < 1
4 then the number

of nodal domains of a λ1(S)-eigenfunction is at most two. Since any λ1-eigenfunction φ has
mean zero, Z(φ) must disconnect S. Hence any λ1-eigenfunction has exactly two nodal
domains.
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2.3 Cusps

Let S be a finite area hyperbolic surface. Then S is homeomorphic to a closed surface with
finitely many points removed. Each of these points, called punctures, has special neighbor-
hoods in S called cusps. Denote by ι the parabolic isometry ι : z → z + 2π . For a choice of
t > 0, a cusp P t is the half-infinite cylinder {z = x + iy : y > 2π

t }/ < ι >. The boundary
curve {y = 2π

t } is a horocycle of length t . The hyperbolic metric on P t has the form:

ds2 = dx2 + d y2

y2
. (2.3)

Any function f ∈ L2(P t ) has a Fourier development in the x variable of the form

f (z) =
∑
n∈Z∗

fn(y) cos(nx + θn). (2.4)

If f satisfy the equation Δ f = s(1− s) f then the above expression can be simplified as

f (z) = f0(y) +
∑
j≥1

f j

√
2 j y

π
Ks− 1

2
( j y) cos

(
j.x − θ j

)

= f0(y) +
∑
j≥1

√
2 j y

π
Ks− 1

2
( j y)

(
f e

j cos( j.x) + f o
j sin( j.x)

)
(2.5)

where Ks is the modified Bessel function (see [17]) and

f0(y) = f0,1ys + f0,2y1−s if s �= 1

2
and

f0(y) = f0,1y
1
2 + f0,2y

1
2 log y if s = 1

2
. (2.6)

The function f is called cuspidal if f0(y) ≡ 0. Observe that if s = 1
2 then, since

f ∈ L2(P t ), we must have f0(y) ≡ 0 i.e. f must be cuspidal.

3 Genus two: Proof of Theorem 1.2

We begin by proving that B2(
1
4 ) disconnects M2. We argue by contradiction and assume

that M2\B2(
1
4 ) is connected. Now, for any S ∈ M2\B2(

1
4 ): λ1(S) ≤ 1

4 and so λ1(S) is
simple by Proposition 1.1. Recall that if an eigenvalue λ is simple then the nodal set of
λ-eigenfunctions is defined without any ambiguity (see Sect. 2.2). In particular, for any
S ∈ M2\B2(

1
4 ) the nodal set ZS of λ1(S)-eigenfunctions is defined without any ambiguity.

Now letφS be aλ1(S)-eigenfunctionwith nodal setZ(φS) = ZS . SinceφS is an eigenfunction
corresponding to λ1(S), by Courant’s nodal domain theorem, S\Z(φS) has exactly two
components. Denote by S+ (resp. S−) the component of S\Z(φS)where φS is positive (resp.
negative). By the Euler–Poincaré formula (2.2) applied to the graph Z(φS) we have the
following equality:

χ(S) = χ(S+) + χ(S−) + χ(Z(φS)). (3.1)

Since χ(S) = −2 and both χ(S+) and χ(S−) are negative by Lemma 2.1 we conclude
from (3.1) that χ(Z(φS)) = 0. This immediately implies that Z(φS) consists of disjoint
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Fig. 1 Decomposition

Decomposition

simple closed curve(s) that divide S into exactly two components. From Theorem 2.1 it is
clear that each curve in Z(φS) appear in the boundary of each of S+ and S−. This, together
with the simplicity ofZ(φS), implies that the number of boundary components of S+ and S−
are the same. Now a simple Euler characteristic counting provides the following description
(Fig. 1).

Lemma 3.1 For any S ∈ M2\B2(
1
4 ) the nodal set ZS consists either of three smooth simple

closed curves that divide S into two pair of pants (the first picture below) or of a unique
smooth simple closed curve that divides S into two tori with one hole (the second picture
below).

Now we have the following:

Lemma 3.2 Let S ∈ M2 be such that λ1(S) is simple and the nodal set ZS of λ1(S)-
eigenfunctions is also simple. Then S has a neighborhood N (S) in M2 such that λ1(S′) is
simple for any S′ ∈ N (S) and the nodal set ZS′ of λ1(S′)-eigenfunctions isotopic to ZS.

Proof First observe that since λ1(S) is simple, by the continuity of λ1 as a function, we have
a neighborhoodN ′(S) of S inM2 such that λ1(S′) is simple for any S′ ∈ N ′(S). Let φS be a
λ1(S)-eigenfunction and let S+ and S− be the two components of S\Z(φS) such that φS has
positive sign on S+ and negative sign on S−. Consider a tubular neighborhood TS of Z(φS)

in S. By [19, Theorem 3.36] (see also [12,16]) we have a neighborhood N (S) ⊂ N ′(S) of
S such that for any S′ ∈ N (S), one can obtain a λ1(S′)-eigenfunction φS′ that has positive
sign on S+\TS and negative sign on S−\TS . In particular, ZS′ = Z(φS′) ⊂ TS . Hence by the
description of ZS′ as in Lemma 3.1 the proof follows.

Therefore, there exists S ∈ M2\B2(
1
4 ) such thatZS consists of only one curve if and only

if for all S′ ∈ M2\B2(
1
4 ), ZS′ consists of only one curve. This is a contradiction to our next

result Proposition 3.1.

Definition 3.1 The systole s(S) of a surface S is the minimum of the lengths of closed
geodesics on S. The injectivity radius of S at a point p is the radius of the largest geodesic disc
that can be embedded in S with center p. For any ε > 0 the set of points of S with injectivity
radius at least ε is denoted by S[ε,∞). Each point in the complement S(0,ε) = S\S[ε,∞) has
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On largeness and multiplicity of the first eigenvalue of… 341

injectivity radius at most ε. S[ε,∞) and S(0,ε) are respectively called ε-thick part and ε-thin
part of S.

Proposition 3.1 Let S be a finite area hyperbolic surface of type (g, n). Let G = (γi )
k
i=1 be

a collection of smooth, mutually non-intersecting simple closed curves on S that separates
S in exactly two components. Assume that G is minimal in the sense that no proper subset
of G can separate S. Then given any ε, δ > 0 there exists a finite area hyperbolic surface
SG of type (g, n) with s(SG) < ε such that λ1(SG) < δ is simple and the nodal set ZSG of
λ1(SG)-eigenfunctions is isotopic to G.

Remark 3.1 For particular cases it is not very difficult to construct two collections of curves
on S, as in the above lemma, that are not isotopic. In the case (g, n) = (2, 0) claim 3.1
provides two such collections. Therefore Proposition 3.1 indeed provide two surfaces S1,
S2 ∈ M2\B2(

1
4 ) such that ZS1 is not isotopic to ZS2 .

The proof of Proposition 3.1 uses the behavior of sequences of small eigenpairs over
degenerating sequences of hyperbolic surfaces. For precise definitions of these concepts we
refer the reader to [19]. We immediately remark that such behavior has been widely studied
in the literature, see for example [9,12,16,24]. However, the terminology used in the next
proof follows those in [19].

Proof Without loss of generality we may assume that each curve in G is a geodesic. Extend
G to a pants decomposition P = (γi )

3g−3+n
i=1 of S [4, p-94]. Let (li , θi ) denote the Fenchel–

Nielsen coordinates on Tg,n with respect to (γi )
3g−3+n
i=1 . Here li denotes the length parameter

and θi denotes the twist parameter along γi .
Now consider the sequence of surfaces (Sm) in Tg,n such that li (Sm) = 1

m for i ≤ k,
l j = c1 > 0 for j > k and θ j = c2 > 0 for 1 ≤ j ≤ 3g − 3 + n. Then, up to extracting a
subsequence, (Sm) converges to a finite area hyperbolic surface S∞ ∈ ∂Mg,n . Let us denote
the extracted subsequence by (Sm) itself. Observe that S∞ is obtained from S by pinching the
geodesics in G. Namely, for each i = 1, . . . , k there is a geodesic γ m

i in Sm , in the homotopy
class of γi , whose length tends to zero as m → ∞.

The number of components of S∞ ∈ Mg,n is exactly two. Hence by Colbois and Cour-
tois [9], λ1(Sm) → 0 and all other eigenvalues of Sm stay away from zero. In particular
λ1(Sm) is simple for m sufficiently large. Let φSm be a λ1(Sm)-eigenfunction with L2-norm
1. Recall that we want to prove that for any ε, δ > 0 there exists a SG with s(SG) < ε such
that λ1(SG) < δ is simple and the nodal set ZSG of any λ1(SG)-eigenfunction is isotopic
to G. Since s(Sm) → 0 by construction and λ1(Sm) → 0 by above it suffices to prove that
Z(φSm ) is isotopic to G for sufficiently large m.

Now we apply [19, Theorem 3.34] to extract a subsequence of φSm that converges uni-
formly over compacta to a 0-eigenfunction φ∞ of S∞ with L2-norm 1. Let us denote the
extracted subsequence by (Sm) itself. Since 0-eigenfunctions are constant functions, φ∞ is
constant on each components of S∞.

Lemma 3.3 The two constant values of φ∞ on the two components of S∞ are non-zero and
have opposite sign.

Proof For ε > 0 let us denote the L2-norm of φSm restricted to S(0,ε)
m by ‖φSm ‖

S(0,ε)
m

. By the
uniform convergence of φSm to φ∞ over compacta we have∫

S[ε,∞)∞
φ2∞ = lim

m→∞

∫
S[ε,∞)

m

φ2
Sm

= 1 − lim
m→∞‖φSm ‖2

S(0,ε)
m

.
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Since
∫

S∞φ2∞ = limε→0
∫

S[ε,∞)∞
φ2∞ = 1 we obtain that for any δ > 0 there exists ε > 0

such that limm→∞‖φSm ‖
S(0,ε)

m
≤ δ. Now

∣∣∣∣
∫

S[ε,∞)∞
φ∞

∣∣∣∣ = lim
m→∞

∣∣∣∣
∫

S[ε,∞)
m

φSm

∣∣∣∣ =
∣∣∣∣0 − lim

m→∞

∫
S(0,ε)

m

φSm

∣∣∣∣
≤ lim

m→∞

√
|S(0,ε)

m |‖φSm ‖
S(0,ε)

m
( by Holder inequality) ≤ δ lim

m→∞

√
|S(0,ε)

m |.

Here |S(0,ε)
m | denotes the area of S(0,ε)

m . Recall that, for anym ∈ N∪∞, limε→0|S(0,ε)
m | = 0.

So for m ≥ 1 and ε sufficiently small:∣∣∣∣
∫

S[ε,∞)∞
φ∞

∣∣∣∣ < δ and |S(0,ε)
m | < δ.

Finally, taking ε to be sufficiently small, we calculate:∣∣∣∣
∫

S∞
φ∞

∣∣∣∣ ≤
∣∣∣∣
∫

S[ε,∞)∞
φ∞

∣∣∣∣ +
∣∣∣∣
∫

S(0,ε)∞
φ∞

∣∣∣∣ ≤ δ +
√

|S(0,ε)∞ |‖φS∞‖
S(0,ε)∞

≤ 2δ

since ‖φS∞‖
S(0,ε)∞

< ‖φS∞‖ = 1. Since δ is arbitrary we conclude that
∫

S∞φ∞ = 0. Hence

φ∞ has L2-norm 1 and mean zero.
Since φ∞ has L2-norm 1 at least one of the two constant values of φ∞ on the two

components of S∞ is non-zero. Since φ∞ has mean zero both of these values are non-zero
with opposite sign.

As the length of γ m
i tends to zero, we may assume that the collar neighborhood Cm

i of γ m
i

with two boundary components of length 1 embeds in Sm and (Cm
i )k

i=1 are mutually disjoint.
At this point we recall that G is minimal in the sense that no proper subset of G can separate
S. Hence not only Sm\∪k

i=1(C
m
i ) separates S in exactly two components but also no proper

sub-collection of (Cm
i )k

i=1 can separate Sm . In particular, for each i , the limits of the two
components of ∂Cm

i belong to the two different components of S∞. Using Lemma 3.3 let us
denote the limits of these two boundary sets by B∞

i (+) and B∞
i (−) such that φ∞|B∞

i (+) > 0
and φ∞|B∞

i (−) < 0. Correspondingly denote the two components of ∂Cm
i by Bm

i (+) and
Bm

i (−) such that B∞
i (±) is the limit of Bm

i (±) respectively. By the uniform convergence
of φSm to φ∞ over compacta we conclude that, for sufficiently large m, φSm |Bm

i (+) > 0
and φSm |Bm

i (−) < 0. Hence, for m sufficiently large, at least one component of Z(φSm ) is
contained in Cm

i .
Let Zi denote the union of the components of Z(φSm ) that are contained in Cm

i . Let α be
a simple closed loop in Zi . Since π1(Cm

i ) is Z there are only two possibilities for α. Either
it bounds a disc in Cm

i or it is homotopic to γ m
i . Since λ1(Sm) is small, each component of

Sm\Z(φSm ) has negative Euler characteristic by Lemma 2.1. This discards the possibility that
α bounds a disc in Cm

i . Hence α is homotopic to γ m
i . Let β be another simple closed loop in

Zi . Then β is also homotopic to γ m
i implying that one of the components of Sm\Z(φSm ) has

non-negative Euler characteristic. This leaves us with the observation that each Cm
i contains

exactly one loop αm
i from Z(φSm ). By remark 2.1 αm

i is in fact smooth. Therefore we have
an isotopy of S that sends αm

i to γ m
i . Combining these isotopies we obtain that Z(φSm ) is

isotopic to (γ m
i )k

i=1.

It remains to show that B2(
1
4 ) is unbounded. We argue by contradiction and assume that

B2(
1
4 ) is bounded. Then we have ε > 0 such that B2(

1
4 ) is contained in the compact set

Iε = {S ∈ M2 : s(S) ≥ ε} [1]. Now applying Proposition 3.1 obtain S1 and S2 inM2 such
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that s(Si ) < ε, λ1(Si ) < 1
4 is simple and the nodal set ZS1 of λ1(S1)-eigenfunctions is not

isotopic to the nodal set ZS2 of λ1(S2)-eigenfunctions. On the other hand, since M2\Iε is
path connected (see Lemma 5.3) we may have a path β in M2\Iε ⊂ M2\B2(

1
4 ) that joins

S1 and S2. By the last inclusion β ⊂ M2\B2(
1
4 )we get that λ1 is simple along β and we may

apply Lemma 3.2 to obtain that the nodal set of λ1-eigenfunctions is constant, up to isotopy,
along β. In particular, ZS1 is isotopic to ZS2 , a contradiction.

3.1 Proof of Theorem 1.3

The case (g, n) = (2, 0) is the content of the above theorem. It remains to prove Theorem 1.3
for (g, n) = (1, 2) and (0, 4). For the rest of the proof we refer to the pair (g, n) for only
these two cases.We argue by contradiction and assume thatMg,n\Cg,n( 14 ) is connected. By
definition λ1(S) < 1

4 for any S ∈ Mg,n\Cg,n( 14 ). Hence λ1(S) is an eigenvalue and by [21] it
is the only non-zero small eigenvalue of S. Hence the nodal setZS of λ1(S)-eigenfunctions is
defined without any ambiguity. Let φS be a λ1(S)-eigenfunction with nodal setZ(φS) = ZS .
Denote by S the surface obtained from S by filling in its punctures and by Z(φS) the closure
of Z(φS) in S. By Lemma 2.1 Z(φS) is a finite graph without any isolated or free vertex.
Now the Euler–Poincaré formula (2.2) applied to the graph Z(φS) provides the equality

χ(S) − k = χ
(

S\Z(φS)
)

+ χ
(
Z(φS)

)
(3.2)

where k is the number of punctures of S that do not lie on Z(φS). By Lemma 2.1 each
component of S\Z(φS) has negative Euler characteristic and so χ(S\Z(φS)) ≤ −2. Recall
that the Euler characteristic of a finite graph without any isolated or free vertex is always
≤ 0. Now, for (g, n) = (1, 2), χ(S) = 0 and so we have the only possibility k = 2 and
χ(Z(φS)) = 0. Also, for (g, n) = (0, 4), χ(S) = 2 leaves us with the only possibility
k = 4 and χ(Z(φS)) = 0. Hence, in both cases, none of the punctures of S lie on Z(φS). In
particular, Z(φS) = Z(φS) is a compact subset of S. Since χ(Z(φS)) = 0 we conclude that
Z(φS) is a union of simple closed curves in S. Following arguments similar to those in the
genus two case we obtain the following description.

Lemma 3.4 Let S ∈ Mg,n\Cg,n( 14 ).

(i) If (g, n) = (1, 2) then ZS = Z(φS) consists of either exactly one simple closed curve
or two simple closed curves. In the first case ZS divides S into two components one of
which is a surface of genus one with a copy of ZS as its boundary and the other one is
a twice punctured sphere with a copy of ZS as its boundary. In the last case ZS divides
S into two components each of which is a once punctured sphere with two boundary
components coming from ZS.

(ii) If (g, n) = (0, 4) then ZS consists of exactly one simple closed curve (there are two
possibilities for this up to isotopy) that separates S into two components each of which
is a twice punctured sphere with one boundary component coming from ZS.

Next we have the following modified version of Lemma 3.2. Let S ∈ Mg,n\Cg,n( 14 ) with
nodal set ZS of λ1(S)-eigenfunctions.

Lemma 3.5 There exists a neighborhood N (S) of S in Mg,n such that λ1(S′) is simple for
any S′ ∈ N (S) and the nodal set ZS′ is isotopic to ZS.

Proof By assumption λ1(S) < 1
4 and so λ1 defines a continuous function in a neighborhood

of S by [12](see also [9,19]). Hence we have a neighborhood N ′(S) ⊂ Mg,n\Cg,n( 14 ) of S.
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Fig. 2 Cover

In particular, for S′ ∈ N ′(S), the nodal set ZS′ of λ1(S′)-eigenfunctions has the description
in Lemma 3.4. Let φS be a λ1(S)-eigenfunction. Now consider a tubular neighborhood TS

of ZS in S such that S\TS has two components S+ and S− with φS |S+ > 0 and φS |S− < 0.
Furthermore, using Lemma 3.4 we assume that the boundary components ∂S±of S± are
disjoint union of simple closed curves.

Now, as λ1 is simple and < 1
4 on N ′(S), by [12], for any compact subset K of S,

one can find λ1(S′)-eigenfunctions φS′ such that the map Φ : K × N ′(S) → R given by
Φ(x, S′) = φS′(x) is continuous. Considering K = ∂S+ ∪ ∂S− we obtain a neighborhood
N (S) ⊂ N ′(S) of S such that for any S′ ∈ N (S): φS′ |∂S+ > 0 and φS′ |∂S− < 0. In particular,
Z(φS′) ⊂ TS for any S′ ∈ N (S). Finally by the description of ZS′ = Z(φS′) in Lemma 3.4
we obtain the lemma.

Continuation of proof of Theorem 1.3 Since by our assumptionMg,n\Cg,n( 14 ) is connected
the above claim implies that only one of the two possibilities in Lemma 3.4 can actually
occur. This is a contradiction to Proposition 3.1.

Now we show that C1,2( 14 ) is unbounded. We argue by contradiction and assume that
C1,2( 14 ) is bounded. Then we have ε > 0 such that C1,2( 14 ) is contained in the compact set
Iε = {S ∈ M1,2 : s(S) ≥ ε} [1]. Applying Lemma 3.1 we obtain S1 and S2 in M1,2 such
that s(Si ) < ε, λ1(Si ) < 1

4 is simple and the nodal set ZS1 of λ1(S1)-eigenfunctions is not
isotopic to the nodal set ZS2 of λ1(S2)-eigenfunctions. On the other hand, since M1,2\Iε is
path connected (see Lemma 5.3) we may have a path β in M1,2\Iε ⊂ M1,2\C1,2( 14 ) that
joins S1 and S2. By the last inclusion β ⊂ M2\C1,2( 14 ) we get that λ1 is simple along β and
we may apply Lemma 3.2 to obtain that ZS1 is isotopic to ZS2 , a contradiction (Fig. 2).

4 Branches of eigenvalues

In this section we consider branches of eigenvalues along paths in Tg . Main purpose of doing
so is that the multiplicity of λi , in particular λ1, is not one in general (see Theorem 1.6).
Therefore along ’nice’ paths in Tg the functions λi may not be ’nice’ enough (see Sect. 1.1).
However, Theorem 1.4 shows that up to certain choice at points of multiplicity λi ’s are in fact
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’nice’. This ’nice’ choice makes λi into a branch of eigenvalues (see Sect. 1.1). Theorem 1.5
says that if we restrict ourselves to branches of eigenvalues then we have a positive answer to
Conjecture 1.2, namely there are branches of eigenvalues that start as λ1 and becomes more
than 1

4 .

Proof (Proof of Theorem 1.5) We begin by explaining the embedding Π : T2 → Tg (see the
next figure cover). Let S be the closed hyperbolic surface of genus two and α, β, γ , δ are
four geodesics on S as in the picture below. Now cut S along δ to obtain a hyperbolic surface
S∗ with genus one and two geodesic boundaries (each a copy of δ). Consider g − 1 many
copies of S∗ and glue them along their consecutive boundaries after arranging them along a
circle as in the picture below. Let Π(S) denote the resulting hyperbolic surface.

Now take a geodesic pants decomposition (ξi )i=1,2,3 of S involving δ = ξ3 and consider
the Fenchel–Nielsen coordinates (li , θi )i=1,2,3 onT2 with respect to this pants decomposition.
Here li = l(ξi ) is the length of the closed geodesic ξi and θi is the twist parameter at ξi .
The images of (ξi )i=1,2,3 inΠ(S), (ξ j

i )i=1,2,3; j=1,2,...,g−1 is a geodesic pants decomposition

of Π(S). Consider the the Fenchel–Nielsen coordinates (l j
i , θ

j
i )i=1,2,3; j=1,2,...,g−1 on Tg

with respect to this pants decomposition. As before, l j
i = l(ξ j

i ) is the length of the closed

geodesic ξ
j

i and θ
j

i is the twist parameter at ξ j
i . With respect to these pants decompositions

Π is expressed as

(l1, l2, l3, θ1, θ2, θ3) → (l1, l2, l3, θ1, θ2, θ3︸ ︷︷ ︸
1

, . . . , l1, l2, l3, θ1, θ2, θ3︸ ︷︷ ︸
g−1

). (4.1)

This is an analytic map and the image Π(S) of any S ∈ T2 has an isometry τ of order
(g −1) that sends one 6-tuple (l1, l2, l3, θ1, θ2, θ3) to the next one. Also Π(S)/τ is isometric
to S i.e. Π(S) is a (g − 1) sheeted covering of S. Hence each eigenvalue of S is also an
eigenvalue of Π(S). In particular, a branch λt of eigenvalues in T2 along η(t) is a branch of
eigenvalues in Tg along Π(η(t)).

To finish the proof we need only to find S ∈ T2 such that λ1(S) = λ1(Π(S)). Once we find
such a S, we can consider any analytic path η in T2 such that η(o) = S and λ1(η(1)) > 1

4 .
Then the branch of eigenvalues λt = λ1(η(t)) along Π(η(t)) would be a branch that we
seek.

To show this we employ the technique in Proposition 3.1. Let Sn be a sequence of surfaces
of genus two on which the lengths of the geodesics α, β and γ tends to zero. In particular,
Sn → S∞ ∈ M0,3 ∪ M0,3 implying λ1(Sn) → 0 and λ2(Sn) � 0. The sequence Π(Sn)

converges to a surface in M0,g+1 ∪ M0,g+1 and so λ1(Π(Sn)) → 0 and λ2(Π(Sn)) � 0.
So for large n, λ1(Sn) < λ2(Π(Sn)) implying λ1(Sn) = λ1(Π(Sn)).

5 Punctured spheres

We begin this section by recapitulating the ideas in [5]. By purely number theoretic methods
Atle Selberg showed that for any congruence subgroup Γ of SL(2, Z), λ1(H/Γ ) ≥ 3

16 .
The purpose in [5] was to construct explicit closed hyperbolic surfaces with λ1 close to 3

16 .
To achieve this goal the authors of [5] considered principal congruence subgroups Γn (see
introduction) and corresponding finite area hyperbolic surfaces H/Γn . Then they replaced
the cusps in H/Γn , which is even in number, by closed geodesics of small length t and glued
them in pairs (see [5] for details). The surface St obtained in this way is closed, their genus
g is independent of t and as t → 0, St → H/Γn in the compactification of the moduli space
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Mg . Rest of the proof showed that λ1 is lower semi-continuous over the family St . A novel
modification of this approach in [6] together with the result of Kim and Sarnak provides
Theorem 1.1.

Limiting properties of eigenvalues over degenerating family of hyperbolic metrics have
been studied well in the literature (to name a few Hejhal [12], Colbois and Courtois [9],
Ji [16], Wolpert [24], Judge [17]) (see also [19, Theorem 2]). These limiting results can be
summarized as:

Theorem 5.1 Let (Sm) be a sequence of hyperbolic surfaces in Mg,n that converges to a
finite area hyperbolic surface S ∈ ∂Mg,n. Let (λm, φm) be an eigenpair of Sm such that
λm → λ < ∞. Then, up to extracting a subsequence and up to rescaling, the sequence (φm)

converges to a generalized eigenfunction, uniformly over compacta, if one of the following
is true (i) n = 0 ([16]) (i i) n �= 0 and λ < 1

4 ([9,12]) (i i i) n �= 0 and λ > 1
4 ([24]) (i i i)

n �= 0, λm ≤ 1
4 and φm is cuspidal ([19]).

Recall that there is a copy of M0,2g+n in the compactification Mg,n of Mg,n . The ideas
in [5] along with above limiting results imply the following.

Lemma 5.1 For any pair (g, n), Λ1(g, n) ≥ Λ1(0, 2g + n).

Motivated by this we focus on Λ1(0, n). Although we would not be able to prove Con-
jecture 1.2 we have Theorem 1.7 on the multiplicity of λ1 which we prove now.

5.1 Proof of Theorem 1.7

Let S be afinite area hyperbolic surface of genus 0 and assume thatλ1(S) is a small eigenvalue.
Following the discussion in Sect. 1.2 λ1(S) < 1

4 . Let S denote the closed surface obtained
by filling in the punctures of S. Let φ be a λ1(S)-eigenfunction. Then the closure Z(φ) of
the nodal set Z(φ) of φ is a finite graph in S by Lemma 2.1. In particular, Z(φ) is a union of
closed loops (not necessarily disjoint) in S. Observe also that the number of components of
S\Z(φ) is same as that of S\Z(φ).

Now let Z(φ) consists of more than one closed loop. Then by Jordan curve theorem the
number of components of S\Z(φ) is at least three. This is a contradiction to Courant’s nodal
domain Theorem 2.2 which says that a λ1(S)-eigenfunction can have at most two nodal
domains. Hence we conclude that Z(φ) consists of exactly one closed loop. In particular, we
have the following description of Z(φ) at any puncture.

Lemma 5.2 If one of the punctures p of S is in Z(φ) then the number of arcs in Z(φ)

emanating from p is at most two.

Let λ1(S) = s(1 − s) with s ∈ ( 12 , 1]. Let p be one of the punctures of S. Let P t be
a cusp around p (see Sect. 2.3). Recall that S being a punctured sphere, does not have any
small cuspidal eigenvalue [13,20]. Thus any λ1(S)-eigenfunction φ is a linear combination
of residues of Eisenstein series (see [14]). It follows from [14, Thorem 6.9] that the ys term
can not occur in the Fourier development (see (2.5) and (2.6)) of these residues in P t . Hence
φ has a Fourier development in P t of the form:

φ(x, y) = φ0y1−s +
∑
j≥1

√
2 j y

π
Ks− 1

2
( j y)(φe

j cos( j.x) + φo
j sin( j.x)). (5.1)

Now we consider the space E1 generated by λ1(S)-eigenfunctions. The map π : E1 → R
3

given by π(φ) = (φ0, φ
e
1, φ

o
1) is linear and so if dim E1 > 3 then ker π is non-empty. Let

123



On largeness and multiplicity of the first eigenvalue of… 347

ψ ∈ ker π i.e. ψ0 = ψe
1 = ψo

1 = 0. Then by the result [17] of Judge, the number of arcs in
Z(ψ) emanating from p is at least four, a contradiction to Lemma 5.2.

Acknowledgments I would like to thankmy advisor Jean-PierreOtal for all his help starting from suggesting
the problem to me. I am thankful to Peter Buser and Werner Ballmann for the discussions that I had with them
on this problem. Finally I would like to thank theMax Planck Institute for Mathematics in Bonn for its support
and hospitality.

Appendix

For the convenience of the reader we give a proof of the fact that, for (g, n) �= (0, 4), (1, 1),
the complement Mg,n\Iε of the compact set Iε = {S ∈ Mg,n : s(S) ≥ ε} [1] is path
connected.

Lemma 5.3 For any (g, n) �= (0, 4), (1, 1) with 2g − 2 + n > 0 and any ε > 0 the set
Mg,n\Iε is path connected.

Proof Let S1 and S2 be two surfaces inMg,n such that s(Si ) < ε. So we have simple closed
geodesics γ1 on S1 and γ2 on S2 such that the length lγi of γi is < ε. Recall that it has always
been our practise to treat Mg,n as a subset of all possible metrics on a fixed surface S and
the geodesics are understood to be parametric curves on S that satisfy certain differential
equations provided by the metric.

With this understanding let us first assume that γ1 does not intersect γ2. Sowemay consider
a pants decomposition P of S containing both γ1 and γ2. Let the Fenchel–Nielsen coordinates
of Si be given by (l j (Si ), θ j (Si ))

3g−3+n
j=1 . Here l1, l2 are the length parameters along γ1, γ2

and θ1, θ2 are twist parameters along γ1, γ2. Then consider the path β : [0, 1] → T2 given
by:

l1(β(t)) =
{

l1(S1) if t ∈ [0, 1
2 ],

2(1 − t)l1(S1) + (2t − 1)l1(S2) if t ∈ [ 12 , 1]

l2(β(t)) =
{

(1 − 2t)l2(S1) + 2tl2(S2) if t ∈ [0, 1
2 ],

l2(S2) if t ∈ [ 12 , 1]
l3(β(t)) = (1−t)l3(S1)+tl3(S2) and θ j (β(t)) = (1−t)θ j (S1)+tθ j (S2). Since l1(β(t)) < ε

for t ∈ [0, 1
2 ] and l2(β(t)) < ε for t ∈ [ 12 , 1] we observe that s(β(t)) < ε for all t . The

image of β under the quotient map Tg,n → Mg,n produces the required path joining S1 and
S2.

Now let us assume that γ1 intersects γ2. Let γ be a simple closed geodesic that does not
intersect γ1 and γ2. By our assumption i.e. (g, n) �= (0, 4), (1, 1) such a geodesic exists.
Then by the procedure described above both S1 and S2 can be joined by a path in Mg,n\Iε

to a surface on which γ has length < ε. This finishes the proof.
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