

On largeness and multiplicity of the first eigenvalue of finite area hyperbolic surfaces

Sugata Mondal¹

Received: 10 February 2014 / Accepted: 17 April 2015 / Published online: 26 May 2015 © Springer-Verlag Berlin Heidelberg 2015

Abstract We apply topological methods to study the smallest non-zero number λ_1 in the spectrum of the Laplacian on finite area hyperbolic surfaces. For closed hyperbolic surfaces of genus two we show that the set $\{S \in \mathcal{M}_2 : \lambda_1(S) > \frac{1}{4}\}$ is unbounded and disconnects the moduli space \mathcal{M}_2 . Using this, for genus $g \ge 3$, we show the existence of eigenbranches that start as λ_1 and eventually becomes $> \frac{1}{4}$.

Keywords Hyperbolic surfaces · Laplace operator · First eigenvalue · Small eigenvalues

1 Introduction

In this paper we identify hyperbolic surfaces with quotients of the Poincaré upper halfplane \mathbb{H} by discrete torsion free subgroups of PSL(2, \mathbb{R}) called *Fuchsian groups*. The *Laplacian* on \mathbb{H} is the differential operator Δ which associates to a real-valued C^2 -function f the function

$$\Delta f(z) = -y^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right).$$
(1.1)

For any Fuchsian group Γ , the induced differential operator on $S = \mathbb{H}/\Gamma$, $\Delta = \Delta_S$ is called the Laplacian on *S*. It is a non-negative operator whose spectrum $\operatorname{spec}(\Delta)$ is contained in a smallest interval $[\lambda_0(S), \infty) \subset \mathbb{R}^+ \cup \{0\}$ with $\lambda_0(S) \ge 0$. Points in the discrete spectrum will be referred to as *eigenvalues*. In particular this means $\lambda \ge 0$ is an eigenvalue if there exists a non-zero C^2 -function $f \in L^2(S)$, called a λ -*eigenfunction*, such that $\Delta f = \lambda f$. The pair (λ, f) is called an *eigenpair*. When $0 < \lambda \le 1/4$, λ is called a *small eigenvalue*, f is called a *small eigenfunction* and the pair (λ, f) is called a *small eigenpair*. Recall that we consider only real-valued functions and so any eigenfunction is a real-valued function.

Sugata Mondal sugata.mondal@mpim-bonn.mpg.de

¹ Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

We shall restrict ourselves to hyperbolic surfaces with finite area. Any such surface *S* is homeomorphic to a closed Riemann surface \overline{S} of certain genus *g* from which some *n* many points are removed. In that case *S* is called a finite area hyperbolic surface of type (g, n). Each of these *n* points is called a *puncture* of *S*.

The spectrum of the Laplacian of a closed hyperbolic surface S consists of a discrete set:

$$0 = \lambda_0 < \lambda_1(S) \le \dots \le \lambda_n(S) \le \dots \infty$$
(1.2)

such that $\lambda_i(S) \to \infty$ as $i \to \infty$. Each number in the above sequence is repeated according to its multiplicity as eigenvalue. The number $\lambda_i(S)$ is called the *i*-th eigenvalue of *S*. The moduli space of genus *g* closed hyperbolic surfaces is denoted by \mathcal{M}_g . It is known that the map $\lambda_i : \mathcal{M}_g \to \mathbb{R}$ that assigns a surface $S \in \mathcal{M}_g$ to its *i*-th eigenvalue $\lambda_i(S)$ is continuous and bounded [4]. Hence

$$\Lambda_i(g) = \sup_{S \in \mathcal{M}_g} \lambda_i(S) < \infty.$$
(1.3)

For non-compact hyperbolic surfaces of finite area the spectrum of the Laplacian is more complicated. It consists of both continuous and discrete components (see [14] for detail). However, the part of the spectrum lying in $[0, \frac{1}{4})$ is discrete. Keeping resemblance to the above definition, for any hyperbolic surface *S*, let us define $\lambda_1(S)$ to be the smallest positive number in spec(Δ). In particular, if $\lambda_1 < \frac{1}{4}$ then it is an eigenvalue. The function λ_1 , so defined, is bounded by $\frac{1}{4}$ because *S* has a continuous spectrum on $[\frac{1}{4}, \infty)$. As before we consider the moduli space $\mathcal{M}_{g,n}$ of finite area hyperbolic surfaces of type (g, n) and define

$$\Lambda_1(g,n) = \sup_{S \in \mathcal{M}_{g,n}} \lambda_1(S).$$
(1.4)

In [22] Atle Selberg proved that for any congruence subgroup Γ of SL(2, \mathbb{Z})

$$\lambda_1(\mathbb{H}/\Gamma) \ge \frac{3}{16}.\tag{1.5}$$

Recall that a congruence subgroup is a discrete subgroup of SL(2, \mathbb{Z}) that contains one of the Γ_n where

$$\Gamma_n = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z}) : a \equiv 1 \equiv d \text{ and } b \equiv 0 \equiv c \pmod{n} \right\}$$
(1.6)

is the principal congruence subgroup of level n. Moreover he conjectured:

Conjecture 1.1 For any congruence subgroup Γ , $\lambda_1(\mathbb{H}/\Gamma) \geq \frac{1}{4}$.

Huxley [13] proved this conjecture for Γ_n with $n \le 6$. Several attempts have been made to prove it (see [14, Chapter 11] for details) in the general case. The best known bound is $\frac{975}{4096}$ due to Kim and Sarnak [18]. This conjecture motivated, in particular, the question of our interest:

Question 1.1 Given any genus $g \ge 2$ does there exist a closed hyperbolic surface of genus g with λ_1 at least $\frac{1}{4}$?

A slightly weaker question than the above one would be: Is $\Lambda_1(g) \ge \frac{1}{4}$? This question is studied in [5] by Buser et al. and in [6] by Brooks and Makover. The ideas in [5,6], in the light of the bound of Kim and Sarnak [18], provide the following.

Theorem 1.1 Given any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that for any $g \ge N_{\epsilon}$ there exist closed hyperbolic surfaces of genus g with $\lambda_1 \ge \frac{975}{4096} - \epsilon$.

The constant $\frac{975}{4096}$ in the above theorem can be replaced by $\frac{1}{4}$ if Conjecture 1.1 is true. Hence it is tempting to conjecture:

Conjecture 1.2 For every $g \ge 2$ there exists a closed hyperbolic surface of genus g whose λ_1 is at least $\frac{1}{4}$.

Remark 1.1 Observe that even if Selberg's conjecture (Conjecture 1.1) is true, Theorem 1.1 would not provide a positive answer to Conjecture 1.2. However, it would imply that for special values of g (see [5]) $\Lambda_1(g) \ge \frac{1}{4}$ and $\liminf_{g\to\infty} \Lambda_1(g) \ge \frac{1}{4}$.

The existence of genus two hyperbolic surfaces with $\lambda_1 > \frac{1}{4}$ has been known in the literature for sometime [15]. It is known that the *Bolza* surface has λ_1 approximately 3.8 (see [23] for more details). We consider the subset $\mathcal{B}_2(\frac{1}{4}) = \{S \in \mathcal{M}_2 : \lambda_1(S) > \frac{1}{4}\}$ of the moduli space \mathcal{M}_2 . From the continuity of λ_1 it is clear that $\mathcal{B}_2(\frac{1}{4})$ is open. Our first result, in some sense, describes how large the open subset $\mathcal{B}_2(\frac{1}{4})$ is.

Theorem 1.2 $\mathcal{B}_2\left(\frac{1}{4}\right)$ is an unbounded set that disconnects \mathcal{M}_2 .

Sketch of the proof of Theorem 1.2 First we prove that $\mathcal{B}_2(\frac{1}{4})$ disconnects \mathcal{M}_2 . For that we argue by contradiction and assume that $\mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ is connected. Now for any $S \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$, $\lambda_1(S)$ is small and hence has multiplicity exactly one by Proposition 1.1. In particular, the space of $\lambda_1(S)$ -eigenfunctions is one dimensional and so the *nodal set* \mathcal{Z}_S of $\lambda_1(S)$ -eigenfunctions is defined without any ambiguity (see Sect. 2.2). We shall see that under our assumptions \mathcal{Z}_S is a disjoint union of simple closed curves. With the help of this property we shall deduce that \mathcal{Z}_S is constant, up to isotopy, on $\mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$. Finally, using an argument involving geodesic pinching (Proposition 3.1) we shall show that there exist surfaces S_1 and S_2 in $\mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ such that \mathcal{Z}_{S_1} is not isotopic to \mathcal{Z}_{S_2} . This provides the desired contradiction. The proof of the rest of the theorem uses similar topological arguments.

For finite area hyperbolic surfaces with Euler characteristic -2 the ideas in the above proof carries over to provide the following.

Theorem 1.3 For any (g, n) with 2g - 2 + n = 2 (i.e. (g, n) = (2, 0), (1, 2) or (0, 4)) the set $C_{g,n}(\frac{1}{4}) = \{S \in \mathcal{M}_{g,n} : \lambda_1(S) \ge \frac{1}{4}\}$ disconnects $\mathcal{M}_{g,n}$. Moreover for (g, n) = (2, 0) and (1, 2) it is unbounded.

1.1 Eigenvalue branches

Recall that the moduli space \mathcal{M}_g is the quotient of the Teichmüller space \mathcal{T}_g by the *Teichmüller* modular group M_g (see [4]). We are shifting from the moduli space to the Teichmüller space mainly because we wish to talk about analytic paths which involve coordinates and on \mathcal{T}_g one has the Fenchel–Nielsen coordinates (given a pants decomposition) which is easy to describe.

Let $\gamma : [0, 1] \to T_2$ be an analytic path. Since, in this case, λ_1 is simple as long as small (by Proposition 1.1), the function $\lambda_1(S^t)$ ($S^t = \gamma(t)$) is also analytic (see Theorem 1.4) if $\lambda_1(S^t) \le \frac{1}{4}$ for all $t \in [0, 1]$. For higher genus λ_1 may not be simple even if small (see Sect. 1.2). Therefore, for an analytic path $\gamma : [0, 1] \to T_g$, $\lambda_1(S^t)$ is continuous but need not be analytic even if $\lambda_1(S^t) \le \frac{1}{4}$ for all $t \in [0, 1]$. However we have the following result from [4, Theorem 14.9.3]: **Theorem 1.4** Let $(S^t)_{t \in I}$ be a real analytic path in \mathcal{T}_g . Then there exist real analytic functions $\lambda_k^t : I \to \mathbb{R}$ such that for each $t \in I$ the sequence (λ_k^t) consist of all eigenvalues of S^t (listed with multiplicities, though not in increasing order).

Each function λ_k^t is called a branch of eigenvalues along S^t . More precisely

Definition 1.1 Let $\alpha : [0, 1] \to T_g$ be an analytic path. An analytic function $\lambda_t : [0, 1] \to \mathbb{R}$ is called a branch of an eigenvalue along α if, for each t, λ_t is an eigenvalue of $\alpha(t)$. If $\lambda_0 = \lambda_i(\alpha(0))$ then we shall say that λ_t is a branch of eigenvalues along α that starts as λ_i . If the underlying path α is fixed then we shall skip referring to it.

Here, instead of considering λ_1 , we consider branches of eigenvalues that start as λ_1 and modify question 1.1 as:

Question 1.2 For any $g \ge 2$ does there exist branches of eigenvalues in \mathcal{T}_g that start as λ_1 and exceeds $\frac{1}{4}$ eventually ?

Fortunately this modified question turns out to be much easier than the original one and we have a positive answer to it.

Theorem 1.5 For any $g \ge 2$ there are branches of eigenvalues in \mathcal{T}_g that start as λ_1 and take values strictly bigger than $\frac{1}{4}$.

Recall that \mathcal{T}_2 can be embedded in \mathcal{T}_g as an analytic subset containing surfaces with certain symmetries (see Sect. 4). The branches in Theorem 1.5 will be obtained by composing the branches in \mathcal{T}_2 by the above embedding $\Pi : \mathcal{T}_2 \to \mathcal{T}_g$. We shall use a *geodesic pinching* argument to prove that among these branches there are ones that start as λ_1 .

1.2 Multiplicity

For any eigenvalue λ of *S*, the dimension of ker($\Delta - \lambda.1$) is called the multiplicity of λ . If the multiplicity of λ_1 were one for all closed hyperbolic surfaces of genus *g* then Theorem 1.5 would have showed the existence of surfaces with $\lambda_1 > \frac{1}{4}$ implying Conjecture 1.2. However this is not the case and in fact the following is proved in [10]:

Theorem 1.6 For every $g \ge 3$ and $n \ge 0$ there exists a surface $S \in \mathcal{M}_{g,n}$ such that $\lambda_1(S)$ is small and has multiplicity equal to the integral part of $\frac{1+\sqrt{8g+1}}{2}$.

For $g \ge 3$ the above bound is more than 3. Hence our methods in Theorem 1.2 for g = 2 do not work for $g \ge 3$. In [20] the following upper bound on the multiplicity of a small eigenvalue is proved.

Proposition 1.1 Let *S* be a finite area hyperbolic surface of type (g, n). Then the multiplicity of a small eigenvalue of *S* is at most 2g - 3 + n.

Our last result is an improvement of this result for finite area hyperbolic surfaces of type (0, n). Recall that for any finite area hyperbolic surface if $\frac{1}{4}$ is an eigenvalue then it must be a *cuspidal* eigenvalue (see Sect. 2.3). Now, hyperbolic surfaces of type (0, n) can not have small cuspidal eigenvalues by [20, Proposition 2] (see also [13]). Therefore, for a finite area hyperbolic surfaces *S* of type (0, n) if $\lambda_1(S)$ is a small eigenvalue then automatically $\lambda_1(S) < \frac{1}{4}$.

Theorem 1.7 Let S be a finite area hyperbolic surface of genus 0. If $\lambda_1(S)$ is a small eigenvalue then the multiplicity of $\lambda_1(S)$ is at most three.

Sketch of proof Let \overline{S} denote the closed surface obtained by filling in the punctures of S. By assumption $\lambda_1(S)$ is small. Following the discussion above $\lambda_1(S) < \frac{1}{4}$. Let ϕ be a $\lambda_1(S)$ -eigenfunction with nodal set $\mathcal{Z}(\phi)$. Let $\overline{\mathcal{Z}(\phi)}$ be the closure of $\mathcal{Z}(\phi)$ in \overline{S} which is a finite graph by Lemma 2.1.

Using Jordan curve theorem and Courant's nodal domain theorem (see Sect. 2.2) we shall deduce the simple description of $\overline{\mathcal{Z}}(\phi)$ as a simple closed curve in \overline{S} . In particular, if one of the punctures p of S lies on $\overline{\mathcal{Z}}(\phi)$ then the number of arcs in $\overline{\mathcal{Z}}(\phi)$ emanating from p is at most two.

Let *p* be one of the punctures of *S*. We shall deduce that in any cusp around *p* any $\lambda_1(S)$ -eigenfunction ϕ has a Fourier development of the form:

$$\phi(x, y) = \phi_0 y^{1-s} + \sum_{j \ge 1} \sqrt{\frac{2jy}{\pi}} K_{s-\frac{1}{2}}(jy) (\phi_j^e \cos(j.x) + \phi_j^o \sin(j.x))$$
(1.7)

where $\lambda_1(S) = s(1-s)$ with $s \in (\frac{1}{2}, 1]$ and *K* is the modified Bessel function of exponential decay (see Sect. 2.3). Denote the vector space generated by $\lambda_1(S)$ -eigenfunctions by \mathcal{E}_1 and consider the map $\pi : \mathcal{E}_1 \to \mathbb{R}n^3$ given by $\pi(\phi) = (\phi_0, \phi_1^e, \phi_1^o)$. This is a linear map and so if dim $\mathcal{E}_1 > 3$ then ker π is non-empty. Let $\psi \in \ker \pi$ i.e. $\psi_0 = \psi_1^e = \psi_1^o = 0$. Then by the result [17] of Judge, the number of arcs in $\overline{\mathcal{Z}(\psi)}$ emanating from *p* is at least four, a contradiction to the above description of $\overline{\mathcal{Z}(\phi)}$ at *p*.

2 Preliminaries

In this section we recall some definitions and results that will be necessary in the later sections. We begin by some backgrounds from topology where we recall a particular form of the Euler–Poincaré formula. Then we recall some results on the structure of nodal sets of eigenfunctions. The last part recalls the Fourier expansion of cusp forms in a cusp.

2.1 Backgrounds from topology

Here we recall some background materials from topology. A (finite) graph G on S consists of a pair (V, E) where V, called the set of *vertices* of G, is a finite collection of points of S and E, called the set of *edges* of G, is a finite collection of mutually non-intersecting embedded arcs in S joining the points in V. If an edge e joins two vertices v and w then we say that e is *adjacent* to v and w. The total number of edges adjacent to a vertex is called the *degree* of the vertex. A vertex is called an *isolated vertex* if its degree is zero and a *free vertex* if its degree is one. It is not very difficult to observe that the Euler characteristic of a finite graph without any isolated or free vertex is always ≤ 0 .

Let G = (V, E) be a graph on S. Since both V and E are finite it is easy to observe that for any $\epsilon > 0$ small enough the ϵ -neighborhood $N_{\epsilon}(G)$ of G has piecewise smooth boundary and deformation retracts to G. Moreover, any component C of $S \setminus N_{\epsilon}(G)$ is a deformation retraction of the unique component C' of $S \setminus G$ that contains C. Now choose two such constants ϵ , δ with $\delta < \epsilon$ and consider the decomposition of S into the components of $S \setminus N_{\delta}(G)$ and $N_{\epsilon}(G)$. Then one can use the Mayer–Vietoris sequence [11, p-149] to observe that

$$\chi(S) = \sum_{i} \chi(D_i) + \chi(N_{\epsilon}(G))$$
(2.1)

where D_i runs over the components of $S \setminus N_{\delta}(G)$ and $\chi(A)$ denotes the Euler characteristic of A. Since $N_{\epsilon}(G)$ deformation retracts to G and each component C of $S \setminus N_{\delta}(G)$ is a deformation retraction of the unique component C' of $S \setminus G$ that contains C we obtain

$$\chi(S) = \sum_{i} \chi(D_i) + \chi(G)$$
(2.2)

where D_i runs over the components of $S \setminus G$. This formula is sometimes called the **Euler–Poincaré formula**.

2.2 Nodal sets

For any function $f : S \to \mathbb{R}$, the set $\{x \in S : f(x) = 0\}$ is called the *nodal set* $\mathcal{Z}(f)$ of f. Observe that $\mathcal{Z}(f)$ is invariant under multiplication by non-zero constants i.e. $\mathcal{Z}(f) = \mathcal{Z}(c.f)$ for any $c \neq 0$. Each component of $S \setminus \mathcal{Z}(f)$ is called a *nodal domain* of f. In a neighborhood of a regular point $p \in \mathcal{Z}(f)$ ($\nabla_p f \neq 0$) the implicit function theorem implies that $\mathcal{Z}(f)$ is a smooth curve. In a neighborhood of a critical point $p \in \mathcal{Z}(f)$ ($\nabla_p f = 0$), it is not so simple to describe $\mathcal{Z}(f)$. When f is an eigenfunction of the Laplacian we have the following description due to Cheng [8]:

Theorem 2.1 Let *S* be a surface with a C^{∞} metric. Then, for any solution of the equation $(\Delta - h)\phi = 0, h \in C^{\infty}(S)$, one has:

- (i) Critical points on the nodal set $\mathcal{Z}(\phi)$ are isolated.
- (ii) Any critical point in Z(φ) has a neighborhood N in S which is diffeomorphic to the disc {z ∈ C : |z| < 1} by a C¹-diffeomorphism that sends Z(φ) ∩ N to an equiangular system of rays.

Remark 2.1 (1) $\mathcal{Z}(\phi)$ does not contain any isolated or free vertex.

(2) If *p* ∈ Z(φ) is a critical point of φ then the degree of the graph Z(φ) at *p* is at least 4. Hence if a component of Z(φ) is a simple closed loop then it is automatically smooth.

When S is closed Theorem 2.1 implies that $\mathcal{Z}(\phi)$ is a finite graph. When S is non-compact with finite area it implies *local* finiteness of $\mathcal{Z}(\phi)$ but not *global*. In this particular case we have the following lemma due to Otal [20, Lemma 6] (the second part is [20, Lemma 1])

Lemma 2.1 Let S be a hyperbolic surface with finite area and let $\phi : S \to \mathbb{R}$ be a λ eigenfunction with $\lambda \leq \frac{1}{4}$. Then the closure of $\mathcal{Z}(\phi)$ in \overline{S} is a finite graph without any isolated or free vertex. Moreover, each nodal domain of ϕ has negative Euler characteristic.

In particular, $\mathcal{Z}(\phi)$ is a union of finitely many (not necessarily disjoint) *cycles* in \overline{S} that may contain some of the punctures of S. Next we recall Courant's nodal domain theorem.

Theorem 2.2 Let *S* be a closed hyperbolic surface. Then the number of nodal domains of a $\lambda_i(S)$ -eigenfunction can be at most i + 1.

The proof (see [7] or [8]) of this theorem works also for finite area hyperbolic surfaces if $\lambda_i < \frac{1}{4}$. In particular, for a hyperbolic surface *S* with finite area if $\lambda_1(S) < \frac{1}{4}$ then the number of nodal domains of a $\lambda_1(S)$ -eigenfunction is at most two. Since any λ_1 -eigenfunction ϕ has mean zero, $\mathcal{Z}(\phi)$ must disconnect *S*. Hence any λ_1 -eigenfunction has exactly two nodal domains.

2.3 Cusps

Let *S* be a finite area hyperbolic surface. Then *S* is homeomorphic to a closed surface with finitely many points removed. Each of these points, called punctures, has special neighborhoods in *S* called *cusps*. Denote by *i* the parabolic isometry $i : z \rightarrow z + 2\pi$. For a choice of t > 0, a cusp \mathcal{P}^t is the half-infinite cylinder $\{z = x + iy : y > \frac{2\pi}{t}\}/\langle i \rangle$. The boundary curve $\{y = \frac{2\pi}{t}\}$ is a *horocycle* of length *t*. The hyperbolic metric on \mathcal{P}^t has the form:

$$ds^{2} = \frac{dx^{2} + dy^{2}}{y^{2}}.$$
 (2.3)

Any function $f \in L^2(\mathcal{P}^t)$ has a Fourier development in the x variable of the form

$$f(z) = \sum_{n \in \mathbb{Z}^*} f_n(y) \cos(nx + \theta_n).$$
(2.4)

If f satisfy the equation $\Delta f = s(1-s)f$ then the above expression can be simplified as

$$f(z) = f_0(y) + \sum_{j \ge 1} f_j \sqrt{\frac{2jy}{\pi}} K_{s-\frac{1}{2}}(jy) \cos(j.x - \theta_j)$$

= $f_0(y) + \sum_{j \ge 1} \sqrt{\frac{2jy}{\pi}} K_{s-\frac{1}{2}}(jy) \left(f_j^e \cos(j.x) + f_j^o \sin(j.x)\right)$ (2.5)

where K_s is the modified *Bessel function* (see [17]) and

$$f_0(y) = f_{0,1}y^s + f_{0,2}y^{1-s} \quad \text{if } s \neq \frac{1}{2} \quad \text{and} \\ f_0(y) = f_{0,1}y^{\frac{1}{2}} + f_{0,2}y^{\frac{1}{2}}\log y \quad \text{if } s = \frac{1}{2}.$$
(2.6)

The function f is called *cuspidal* if $f_0(y) \equiv 0$. Observe that if $s = \frac{1}{2}$ then, since $f \in L^2(\mathcal{P}^t)$, we must have $f_0(y) \equiv 0$ i.e. f must be cuspidal.

3 Genus two: Proof of Theorem 1.2

We begin by proving that $\mathcal{B}_2(\frac{1}{4})$ disconnects \mathcal{M}_2 . We argue by contradiction and assume that $\mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ is connected. Now, for any $S \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$: $\lambda_1(S) \leq \frac{1}{4}$ and so $\lambda_1(S)$ is simple by Proposition 1.1. Recall that **if an eigenvalue** λ **is simple then the nodal set of** λ -**eigenfunctions is defined without any ambiguity** (see Sect. 2.2). In particular, for any $S \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ the nodal set \mathcal{Z}_S of $\lambda_1(S)$ -eigenfunctions is defined without any ambiguity. Now let ϕ_S be a $\lambda_1(S)$ -eigenfunction with nodal set $\mathcal{Z}(\phi_S) = \mathcal{Z}_S$. Since ϕ_S is an eigenfunction corresponding to $\lambda_1(S)$, by Courant's nodal domain theorem, $S \setminus \mathcal{Z}(\phi_S)$ has exactly two components. Denote by S^+ (resp. S^-) the component of $S \setminus \mathcal{Z}(\phi_S)$ where ϕ_S is positive (resp. negative). By the Euler–Poincaré formula (2.2) applied to the graph $\mathcal{Z}(\phi_S)$ we have the following equality:

$$\chi(S) = \chi(S^{+}) + \chi(S^{-}) + \chi(\mathcal{Z}(\phi_{S})).$$
(3.1)

Since $\chi(S) = -2$ and both $\chi(S^+)$ and $\chi(S^-)$ are negative by Lemma 2.1 we conclude from (3.1) that $\chi(\mathcal{Z}(\phi_S)) = 0$. This immediately implies that $\mathcal{Z}(\phi_S)$ consists of disjoint

Fig. 1 Decomposition

Decomposition

simple closed curve(s) that divide *S* into exactly two components. From Theorem 2.1 it is clear that each curve in $\mathcal{Z}(\phi_S)$ appear in the boundary of each of S^+ and S^- . This, together with the simplicity of $\mathcal{Z}(\phi_S)$, implies that the number of boundary components of S^+ and S^- are the same. Now a simple Euler characteristic counting provides the following description (Fig. 1).

Lemma 3.1 For any $S \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ the nodal set \mathcal{Z}_S consists either of three smooth simple closed curves that divide S into two pair of pants (the first picture below) or of a unique smooth simple closed curve that divides S into two tori with one hole (the second picture below).

Now we have the following:

Lemma 3.2 Let $S \in M_2$ be such that $\lambda_1(S)$ is simple and the nodal set Z_S of $\lambda_1(S)$ eigenfunctions is also simple. Then S has a neighborhood $\mathcal{N}(S)$ in \mathcal{M}_2 such that $\lambda_1(S')$ is simple for any $S' \in \mathcal{N}(S)$ and the nodal set $Z_{S'}$ of $\lambda_1(S')$ -eigenfunctions isotopic to Z_S .

Proof First observe that since $\lambda_1(S)$ is simple, by the continuity of λ_1 as a function, we have a neighborhood $\mathcal{N}'(S)$ of S in \mathcal{M}_2 such that $\lambda_1(S')$ is simple for any $S' \in \mathcal{N}'(S)$. Let ϕ_S be a $\lambda_1(S)$ -eigenfunction and let S^+ and S^- be the two components of $S \setminus \mathcal{Z}(\phi_S)$ such that ϕ_S has positive sign on S^+ and negative sign on S^- . Consider a tubular neighborhood \mathcal{T}_S of $\mathcal{Z}(\phi_S)$ in S. By [19, Theorem 3.36] (see also [12,16]) we have a neighborhood $\mathcal{N}(S) \subset \mathcal{N}'(S)$ of S such that for any $S' \in \mathcal{N}(S)$, one can obtain a $\lambda_1(S')$ -eigenfunction $\phi_{S'}$ that has positive sign on $S^+ \setminus \mathcal{T}_S$ and negative sign on $S^- \setminus \mathcal{T}_S$. In particular, $\mathcal{Z}_{S'} = \mathcal{Z}(\phi_{S'}) \subset \mathcal{T}_S$. Hence by the description of $\mathcal{Z}_{S'}$ as in Lemma 3.1 the proof follows.

Therefore, there exists $S \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ such that \mathcal{Z}_S consists of only one curve if and only if for all $S' \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$, $\mathcal{Z}_{S'}$ consists of only one curve. This is a contradiction to our next result Proposition 3.1.

Definition 3.1 The systole s(S) of a surface S is the minimum of the lengths of closed geodesics on S. The *injectivity radius* of S at a point p is the radius of the largest geodesic disc that can be embedded in S with center p. For any $\epsilon > 0$ the set of points of S with injectivity radius at least ϵ is denoted by $S^{[\epsilon,\infty)}$. Each point in the complement $S^{(0,\epsilon)} = S \setminus S^{[\epsilon,\infty)}$ has

injectivity radius at most ϵ . $S^{[\epsilon,\infty)}$ and $S^{(0,\epsilon)}$ are respectively called ϵ -thick part and ϵ -thin part of S.

Proposition 3.1 Let *S* be a finite area hyperbolic surface of type (g, n). Let $G = (\gamma_i)_{i=1}^k$ be a collection of smooth, mutually non-intersecting simple closed curves on *S* that separates *S* in exactly two components. Assume that *G* is minimal in the sense that no proper subset of *G* can separate *S*. Then given any $\epsilon, \delta > 0$ there exists a finite area hyperbolic surface S_G of type (g, n) with $s(S_G) < \epsilon$ such that $\lambda_1(S_G) < \delta$ is simple and the nodal set \mathcal{Z}_{S_G} of $\lambda_1(S_G)$ -eigenfunctions is isotopic to *G*.

Remark 3.1 For particular cases it is not very difficult to construct two collections of curves on *S*, as in the above lemma, that are not isotopic. In the case (g, n) = (2, 0) claim 3.1 provides two such collections. Therefore Proposition 3.1 indeed provide two surfaces S_1 , $S_2 \in \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ such that \mathcal{Z}_{S_1} is not isotopic to \mathcal{Z}_{S_2} .

The proof of Proposition 3.1 uses the behavior of sequences of small eigenpairs over degenerating sequences of hyperbolic surfaces. For precise definitions of these concepts we refer the reader to [19]. We immediately remark that such behavior has been widely studied in the literature, see for example [9,12,16,24]. However, the terminology used in the next proof follows those in [19].

Proof Without loss of generality we may assume that each curve in *G* is a geodesic. Extend *G* to a pants decomposition $P = (\gamma_i)_{i=1}^{3g-3+n}$ of *S* [4, p-94]. Let (l_i, θ_i) denote the Fenchel–Nielsen coordinates on $\mathcal{T}_{g,n}$ with respect to $(\gamma_i)_{i=1}^{3g-3+n}$. Here l_i denotes the length parameter and θ_i denotes the twist parameter along γ_i .

Now consider the sequence of surfaces (S_m) in $\mathcal{T}_{g,n}$ such that $l_i(S_m) = \frac{1}{m}$ for $i \leq k$, $l_j = c_1 > 0$ for j > k and $\theta_j = c_2 > 0$ for $1 \leq j \leq 3g - 3 + n$. Then, up to extracting a subsequence, (S_m) converges to a finite area hyperbolic surface $S_\infty \in \partial \mathcal{M}_{g,n}$. Let us denote the extracted subsequence by (S_m) itself. Observe that S_∞ is obtained from S by pinching the geodesics in G. Namely, for each i = 1, ..., k there is a geodesic γ_i^m in S_m , in the homotopy class of γ_i , whose length tends to zero as $m \to \infty$.

The number of components of $S_{\infty} \in \overline{\mathcal{M}_{g,n}}$ is exactly two. Hence by Colbois and Courtois [9], $\lambda_1(S_m) \to 0$ and all other eigenvalues of S_m stay away from zero. In particular $\lambda_1(S_m)$ is simple for *m* sufficiently large. Let ϕ_{S_m} be a $\lambda_1(S_m)$ -eigenfunction with L^2 -norm 1. Recall that we want to prove that for any $\epsilon, \delta > 0$ there exists a S_G with $s(S_G) < \epsilon$ such that $\lambda_1(S_G) < \delta$ is simple and the nodal set \mathcal{Z}_{S_G} of any $\lambda_1(S_G)$ -eigenfunction is isotopic to *G*. Since $s(S_m) \to 0$ by construction and $\lambda_1(S_m) \to 0$ by above it suffices to prove that $\mathcal{Z}(\phi_{S_m})$ is isotopic to *G* for sufficiently large *m*.

Now we apply [19, Theorem 3.34] to extract a subsequence of ϕ_{S_m} that converges uniformly over compacta to a 0-eigenfunction ϕ_{∞} of S_{∞} with L^2 -norm 1. Let us denote the extracted subsequence by (S_m) itself. Since 0-eigenfunctions are constant functions, ϕ_{∞} is constant on each components of S_{∞} .

Lemma 3.3 The two constant values of ϕ_{∞} on the two components of S_{∞} are non-zero and have opposite sign.

Proof For $\epsilon > 0$ let us denote the L^2 -norm of ϕ_{S_m} restricted to $S_m^{(0,\epsilon)}$ by $\|\phi_{S_m}\|_{S_m^{(0,\epsilon)}}$. By the uniform convergence of ϕ_{S_m} to ϕ_{∞} over compact we have

$$\int_{S_{\infty}^{[\epsilon,\infty)}} \phi_{\infty}^2 = \lim_{m \to \infty} \int_{S_m^{[\epsilon,\infty)}} \phi_{S_m}^2 = 1 - \lim_{m \to \infty} \|\phi_{S_m}\|_{S_m^{(0,\epsilon)}}^2.$$

Deringer

Since $\int_{S_{\infty}} \phi_{\infty}^2 = \lim_{\epsilon \to 0} \int_{S_{\infty}^{[\epsilon,\infty)}} \phi_{\infty}^2 = 1$ we obtain that for any $\delta > 0$ there exists $\epsilon > 0$ such that $\lim_{m \to \infty} \|\phi_{S_m}\|_{S_{\infty}^{(0,\epsilon)}} \leq \delta$. Now

$$\begin{split} \left| \int_{S_{\infty}^{[\epsilon,\infty)}} \phi_{\infty} \right| &= \lim_{m \to \infty} \left| \int_{S_{m}^{[\epsilon,\infty)}} \phi_{S_{m}} \right| = \left| 0 - \lim_{m \to \infty} \int_{S_{m}^{(0,\epsilon)}} \phi_{S_{m}} \right| \\ &\leq \lim_{m \to \infty} \sqrt{|S_{m}^{(0,\epsilon)}|} \|\phi_{S_{m}}\|_{S_{m}^{(0,\epsilon)}} (\text{ by Holder inequality}) \leq \delta \lim_{m \to \infty} \sqrt{|S_{m}^{(0,\epsilon)}|}. \end{split}$$

Here $|S_m^{(0,\epsilon)}|$ denotes the area of $S_m^{(0,\epsilon)}$. Recall that, for any $m \in \mathbb{N} \cup \infty$, $\lim_{\epsilon \to 0} |S_m^{(0,\epsilon)}| = 0$. So for $m \ge 1$ and ϵ sufficiently small:

$$\left| \int_{S_{\infty}^{[\epsilon,\infty)}} \phi_{\infty} \right| < \delta \quad \text{and} \quad |S_m^{(0,\epsilon)}| < \delta.$$

Finally, taking ϵ to be sufficiently small, we calculate:

$$\left| \int_{S_{\infty}} \phi_{\infty} \right| \le \left| \int_{S_{\infty}^{[\epsilon,\infty)}} \phi_{\infty} \right| + \left| \int_{S_{\infty}^{(0,\epsilon)}} \phi_{\infty} \right| \le \delta + \sqrt{|S_{\infty}^{(0,\epsilon)}|} \|\phi_{S_{\infty}}\|_{S_{\infty}^{(0,\epsilon)}} \le 2\delta$$

since $\|\phi_{S_{\infty}}\|_{S_{\infty}^{(0,\epsilon)}} < \|\phi_{S_{\infty}}\| = 1$. Since δ is arbitrary we conclude that $\int_{S_{\infty}} \phi_{\infty} = 0$. Hence ϕ_{∞} has L^2 -norm 1 and mean zero.

Since ϕ_{∞} has L^2 -norm 1 at least one of the two constant values of ϕ_{∞} on the two components of S_{∞} is non-zero. Since ϕ_{∞} has mean zero both of these values are non-zero with opposite sign.

As the length of γ_i^m tends to zero, we may assume that the collar neighborhood C_i^m of γ_i^m with two boundary components of length 1 embeds in S_m and $(C_i^m)_{i=1}^k$ are mutually disjoint. At this point we recall that *G* is minimal in the sense that no proper subset of *G* can separate *S*. Hence not only $S_m \setminus \bigcup_{i=1}^k (C_i^m)$ separates *S* in exactly two components but also no proper sub-collection of $(C_i^m)_{i=1}^k$ can separate S_m . In particular, for each *i*, the limits of the two components of ∂C_i^m belong to the two different components of S_∞ . Using Lemma 3.3 let us denote the limits of these two boundary sets by $B_i^\infty(+)$ and $B_i^\infty(-)$ such that $\phi_{\infty}|_{B_i^\infty(+)} > 0$ and $\phi_{\infty}|_{B_i^\infty(-)} < 0$. Correspondingly denote the two components of ∂C_i^m by $B_i^m(+)$ and $B_i^m(-)$ such that $B_i^\infty(\pm)$ is the limit of $B_i^m(\pm)$ respectively. By the uniform convergence of ϕ_{S_m} to ϕ_∞ over compacta we conclude that, for sufficiently large *m*, $\phi_{S_m}|_{B_i^m(+)} > 0$ and $\phi_{S_m}|_{B_i^m(-)} < 0$. Hence, for *m* sufficiently large, at least one component of $\mathcal{Z}(\phi_{S_m})$ is contained in C_i^m .

Let Z_i denote the union of the components of $\mathcal{Z}(\phi_{S_m})$ that are contained in C_i^m . Let α be a simple closed loop in Z_i . Since $\pi_1(C_i^m)$ is \mathbb{Z} there are only two possibilities for α . Either it bounds a disc in C_i^m or it is homotopic to γ_i^m . Since $\lambda_1(S_m)$ is small, each component of $S_m \setminus \mathcal{Z}(\phi_{S_m})$ has negative Euler characteristic by Lemma 2.1. This discards the possibility that α bounds a disc in C_i^m . Hence α is homotopic to γ_i^m . Let β be another simple closed loop in Z_i . Then β is also homotopic to γ_i^m implying that one of the components of $S_m \setminus \mathcal{Z}(\phi_{S_m})$ has non-negative Euler characteristic. This leaves us with the observation that each C_i^m contains exactly one loop α_i^m from $\mathcal{Z}(\phi_{S_m})$. By remark 2.1 α_i^m is in fact smooth. Therefore we have an isotopy of S that sends α_i^m to γ_i^m . Combining these isotopies we obtain that $\mathcal{Z}(\phi_{S_m})$ is isotopic to $(\gamma_i^m)_{i=1}^k$.

It remains to show that $\mathcal{B}_2(\frac{1}{4})$ is unbounded. We argue by contradiction and assume that $\mathcal{B}_2(\frac{1}{4})$ is bounded. Then we have $\epsilon > 0$ such that $\mathcal{B}_2(\frac{1}{4})$ is contained in the compact set $\mathcal{I}_{\epsilon} = \{S \in \mathcal{M}_2 : s(S) \ge \epsilon\}$ [1]. Now applying Proposition 3.1 obtain S_1 and S_2 in \mathcal{M}_2 such

that $s(S_i) < \epsilon$, $\lambda_1(S_i) < \frac{1}{4}$ is simple and the nodal set Z_{S_1} of $\lambda_1(S_1)$ -eigenfunctions is not isotopic to the nodal set Z_{S_2} of $\lambda_1(S_2)$ -eigenfunctions. On the other hand, since $\mathcal{M}_2 \setminus \mathcal{I}_{\epsilon}$ is path connected (see Lemma 5.3) we may have a path β in $\mathcal{M}_2 \setminus \mathcal{I}_{\epsilon} \subset \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ that joins S_1 and S_2 . By the last inclusion $\beta \subset \mathcal{M}_2 \setminus \mathcal{B}_2(\frac{1}{4})$ we get that λ_1 is simple along β and we may apply Lemma 3.2 to obtain that the nodal set of λ_1 -eigenfunctions is constant, up to isotopy, along β . In particular, Z_{S_1} is isotopic to Z_{S_2} , a contradiction.

3.1 Proof of Theorem 1.3

The case (g, n) = (2, 0) is the content of the above theorem. It remains to prove Theorem 1.3 for (g, n) = (1, 2) and (0, 4). For the rest of the proof we refer to the pair (g, n) for only these two cases. We argue by contradiction and assume that $\mathcal{M}_{g,n} \setminus \mathcal{C}_{g,n}(\frac{1}{4})$ is connected. By definition $\lambda_1(S) < \frac{1}{4}$ for any $S \in \mathcal{M}_{g,n} \setminus \mathcal{C}_{g,n}(\frac{1}{4})$. Hence $\lambda_1(S)$ is an eigenvalue and by [21] it is the only non-zero small eigenvalue of S. Hence the nodal set \mathcal{Z}_S of $\lambda_1(S)$ -eigenfunctions is defined without any ambiguity. Let ϕ_S be a $\lambda_1(S)$ -eigenfunction with nodal set $\mathcal{Z}(\phi_S) = \mathcal{Z}_S$. Denote by \overline{S} the surface obtained from S by filling in its punctures and by $\overline{\mathcal{Z}}(\phi_S)$ the closure of $\mathcal{Z}(\phi_S)$ in \overline{S} . By Lemma 2.1 $\overline{\mathcal{Z}}(\phi_S)$ is a finite graph without any isolated or free vertex. Now the Euler–Poincaré formula (2.2) applied to the graph $\overline{\mathcal{Z}}(\phi_S)$ provides the equality

$$\chi(\overline{S}) - k = \chi\left(\overline{S} \setminus \overline{\mathcal{Z}(\phi_S)}\right) + \chi\left(\overline{\mathcal{Z}(\phi_S)}\right)$$
(3.2)

where k is the number of punctures of S that do not lie on $\overline{Z}(\phi_S)$. By Lemma 2.1 each component of $\overline{S} \setminus \overline{Z}(\phi_S)$ has negative Euler characteristic and so $\chi(\overline{S} \setminus \overline{Z}(\phi_S)) \leq -2$. Recall that the Euler characteristic of a finite graph without any isolated or free vertex is always ≤ 0 . Now, for $(g, n) = (1, 2), \chi(\overline{S}) = 0$ and so we have the only possibility k = 2 and $\chi(\overline{Z}(\phi_S)) = 0$. Also, for $(g, n) = (0, 4), \chi(\overline{S}) = 2$ leaves us with the only possibility k = 4 and $\chi(\overline{Z}(\phi_S)) = 0$. Hence, in both cases, none of the punctures of S lie on $\overline{Z}(\phi_S)$. In particular, $\overline{Z}(\phi_S) = Z(\phi_S)$ is a compact subset of S. Since $\chi(\overline{Z}(\phi_S)) = 0$ we conclude that $\mathcal{Z}(\phi_S)$ is a union of simple closed curves in S. Following arguments similar to those in the genus two case we obtain the following description.

Lemma 3.4 Let $S \in \mathcal{M}_{g,n} \setminus \mathcal{C}_{g,n}(\frac{1}{4})$.

- (i) If (g, n) = (1, 2) then $Z_S = Z(\phi_S)$ consists of either exactly one simple closed curve or two simple closed curves. In the first case Z_S divides S into two components one of which is a surface of genus one with a copy of Z_S as its boundary and the other one is a twice punctured sphere with a copy of Z_S as its boundary. In the last case Z_S divides S into two components each of which is a once punctured sphere with two boundary components coming from Z_S .
- (ii) If (g, n) = (0, 4) then Z_S consists of exactly one simple closed curve (there are two possibilities for this up to isotopy) that separates S into two components each of which is a twice punctured sphere with one boundary component coming from Z_S .

Next we have the following modified version of Lemma 3.2. Let $S \in \mathcal{M}_{g,n} \setminus \mathcal{C}_{g,n}(\frac{1}{4})$ with nodal set \mathcal{Z}_S of $\lambda_1(S)$ -eigenfunctions.

Lemma 3.5 There exists a neighborhood $\mathcal{N}(S)$ of S in $\mathcal{M}_{g,n}$ such that $\lambda_1(S')$ is simple for any $S' \in \mathcal{N}(S)$ and the nodal set $\mathcal{Z}_{S'}$ is isotopic to \mathcal{Z}_S .

Proof By assumption $\lambda_1(S) < \frac{1}{4}$ and so λ_1 defines a continuous function in a neighborhood of *S* by [12](see also [9, 19]). Hence we have a neighborhood $\mathcal{N}'(S) \subset \mathcal{M}_{g,n} \setminus \mathcal{C}_{g,n}(\frac{1}{4})$ of *S*.

Fig. 2 Cover

In particular, for $S' \in \mathcal{N}'(S)$, the nodal set $\mathcal{Z}_{S'}$ of $\lambda_1(S')$ -eigenfunctions has the description in Lemma 3.4. Let ϕ_S be a $\lambda_1(S)$ -eigenfunction. Now consider a tubular neighborhood \mathcal{T}_S of \mathcal{Z}_S in S such that $S \setminus \mathcal{T}_S$ has two components S^+ and S^- with $\phi_S|_{S^+} > 0$ and $\phi_S|_{S^-} < 0$. Furthermore, using Lemma 3.4 we assume that the boundary components ∂S^{\pm} of S^{\pm} are disjoint union of simple closed curves.

Now, as λ_1 is simple and $< \frac{1}{4}$ on $\mathcal{N}'(S)$, by [12], for any compact subset K of S, one can find $\lambda_1(S')$ -eigenfunctions $\phi_{S'}$ such that the map $\Phi : K \times \mathcal{N}'(S) \to \mathbb{R}$ given by $\Phi(x, S') = \phi_{S'}(x)$ is continuous. Considering $K = \partial S^+ \cup \partial S^-$ we obtain a neighborhood $\mathcal{N}(S) \subset \mathcal{N}'(S)$ of S such that for any $S' \in \mathcal{N}(S)$: $\phi_{S'}|_{\partial S^+} > 0$ and $\phi_{S'}|_{\partial S^-} < 0$. In particular, $\mathcal{Z}(\phi_{S'}) \subset \mathcal{T}_S$ for any $S' \in \mathcal{N}(S)$. Finally by the description of $\mathcal{Z}_{S'} = \mathcal{Z}(\phi_{S'})$ in Lemma 3.4 we obtain the lemma.

Continuation of proof of Theorem 1.3 Since by our assumption $\mathcal{M}_{g,n} \setminus \mathcal{C}_{g,n}(\frac{1}{4})$ is connected the above claim implies that only one of the two possibilities in Lemma 3.4 can actually occur. This is a contradiction to Proposition 3.1.

Now we show that $C_{1,2}(\frac{1}{4})$ is unbounded. We argue by contradiction and assume that $C_{1,2}(\frac{1}{4})$ is bounded. Then we have $\epsilon > 0$ such that $C_{1,2}(\frac{1}{4})$ is contained in the compact set $\mathcal{I}_{\epsilon} = \{S \in \mathcal{M}_{1,2} : s(S) \geq \epsilon\}$ [1]. Applying Lemma 3.1 we obtain S_1 and S_2 in $\mathcal{M}_{1,2}$ such that $s(S_i) < \epsilon, \lambda_1(S_i) < \frac{1}{4}$ is simple and the nodal set \mathcal{Z}_{S_1} of $\lambda_1(S_1)$ -eigenfunctions is not isotopic to the nodal set \mathcal{Z}_{S_2} of $\lambda_1(S_2)$ -eigenfunctions. On the other hand, since $\mathcal{M}_{1,2} \setminus \mathcal{I}_{\epsilon}$ is path connected (see Lemma 5.3) we may have a path β in $\mathcal{M}_{1,2} \setminus \mathcal{I}_{\epsilon} \subset \mathcal{M}_{1,2} \setminus \mathcal{I}_{1,2}(\frac{1}{4})$ that joins S_1 and S_2 . By the last inclusion $\beta \subset \mathcal{M}_2 \setminus \mathcal{C}_{1,2}(\frac{1}{4})$ we get that λ_1 is simple along β and we may apply Lemma 3.2 to obtain that \mathcal{Z}_{S_1} is isotopic to \mathcal{Z}_{S_2} , a contradiction (Fig. 2).

4 Branches of eigenvalues

In this section we consider branches of eigenvalues along paths in \mathcal{T}_g . Main purpose of doing so is that the multiplicity of λ_i , in particular λ_1 , is not one in general (see Theorem 1.6). Therefore along 'nice' paths in \mathcal{T}_g the functions λ_i may not be 'nice' enough (see Sect. 1.1). However, Theorem 1.4 shows that up to certain choice at points of multiplicity λ_i 's are in fact 'nice'. This 'nice' choice makes λ_i into a branch of eigenvalues (see Sect. 1.1). Theorem 1.5 says that if we restrict ourselves to branches of eigenvalues then we have a positive answer to Conjecture 1.2, namely there are branches of eigenvalues that start as λ_1 and becomes more than $\frac{1}{4}$.

Proof (Proof of Theorem 1.5) We begin by explaining the embedding $\Pi : \mathcal{T}_2 \to \mathcal{T}_g$ (see the next figure cover). Let *S* be the closed hyperbolic surface of genus two and α , β , γ , δ are four geodesics on *S* as in the picture below. Now cut *S* along δ to obtain a hyperbolic surface *S*^{*} with genus one and two geodesic boundaries (each a copy of δ). Consider g - 1 many copies of *S*^{*} and glue them along their consecutive boundaries after arranging them along a circle as in the picture below. Let $\Pi(S)$ denote the resulting hyperbolic surface.

Now take a geodesic pants decomposition $(\xi_i)_{i=1,2,3}$ of *S* involving $\delta = \xi_3$ and consider the Fenchel–Nielsen coordinates $(l_i, \theta_i)_{i=1,2,3}$ on \mathcal{T}_2 with respect to this pants decomposition. Here $l_i = l(\xi_i)$ is the length of the closed geodesic ξ_i and θ_i is the twist parameter at ξ_i . The images of $(\xi_i)_{i=1,2,3}$ in $\Pi(S)$, $(\xi_i^j)_{i=1,2,3;j=1,2,...,g-1}$ is a geodesic pants decomposition of $\Pi(S)$. Consider the the Fenchel–Nielsen coordinates $(l_i^j, \theta_i^j)_{i=1,2,3;j=1,2,...,g-1}$ on \mathcal{T}_g with respect to this pants decomposition. As before, $l_i^j = l(\xi_i^j)$ is the length of the closed geodesic ξ_i^j and θ_i^j is the twist parameter at ξ_i^j . With respect to these pants decompositions Π is expressed as

$$(l_1, l_2, l_3, \theta_1, \theta_2, \theta_3) \to (\underbrace{l_1, l_2, l_3, \theta_1, \theta_2, \theta_3}_{1}, \dots, \underbrace{l_1, l_2, l_3, \theta_1, \theta_2, \theta_3}_{g-1}).$$
(4.1)

This is an analytic map and the image $\Pi(S)$ of any $S \in \mathcal{T}_2$ has an isometry τ of order (g-1) that sends one 6-tuple $(l_1, l_2, l_3, \theta_1, \theta_2, \theta_3)$ to the next one. Also $\Pi(S)/\tau$ is isometric to *S* i.e. $\Pi(S)$ is a (g-1) sheeted covering of *S*. Hence each eigenvalue of *S* is also an eigenvalue of $\Pi(S)$. In particular, a branch λ_t of eigenvalues in \mathcal{T}_2 along $\eta(t)$ is a branch of eigenvalues in \mathcal{T}_g along $\Pi(\eta(t))$.

To finish the proof we need only to find $S \in \mathcal{T}_2$ such that $\lambda_1(S) = \lambda_1(\Pi(S))$. Once we find such a *S*, we can consider any analytic path η in \mathcal{T}_2 such that $\eta(o) = S$ and $\lambda_1(\eta(1)) > \frac{1}{4}$. Then the branch of eigenvalues $\lambda_t = \lambda_1(\eta(t))$ along $\Pi(\eta(t))$ would be a branch that we seek.

To show this we employ the technique in Proposition 3.1. Let S_n be a sequence of surfaces of genus two on which the lengths of the geodesics α , β and γ tends to zero. In particular, $S_n \rightarrow S_{\infty} \in \mathcal{M}_{0,3} \cup \mathcal{M}_{0,3}$ implying $\lambda_1(S_n) \rightarrow 0$ and $\lambda_2(S_n) \not\rightarrow 0$. The sequence $\Pi(S_n)$ converges to a surface in $\mathcal{M}_{0,g+1} \cup \mathcal{M}_{0,g+1}$ and so $\lambda_1(\Pi(S_n)) \rightarrow 0$ and $\lambda_2(\Pi(S_n)) \not\rightarrow 0$. So for large n, $\lambda_1(S_n) < \lambda_2(\Pi(S_n))$ implying $\lambda_1(S_n) = \lambda_1(\Pi(S_n))$.

5 Punctured spheres

We begin this section by recapitulating the ideas in [5]. By purely number theoretic methods Atle Selberg showed that for any congruence subgroup Γ of SL(2, \mathbb{Z}), $\lambda_1(\mathbb{H}/\Gamma) \geq \frac{3}{16}$. The purpose in [5] was to construct explicit closed hyperbolic surfaces with λ_1 close to $\frac{3}{16}$. To achieve this goal the authors of [5] considered principal congruence subgroups Γ_n (see introduction) and corresponding finite area hyperbolic surfaces \mathbb{H}/Γ_n . Then they replaced the cusps in \mathbb{H}/Γ_n , which is even in number, by closed geodesics of small length *t* and glued them in pairs (see [5] for details). The surface S_t obtained in this way is closed, their genus *g* is independent of *t* and as $t \to 0$, $S_t \to \mathbb{H}/\Gamma_n$ in the compactification of the moduli space M_g . Rest of the proof showed that λ_1 is lower semi-continuous over the family S_t . A novel modification of this approach in [6] together with the result of Kim and Sarnak provides Theorem 1.1.

Limiting properties of eigenvalues over degenerating family of hyperbolic metrics have been studied well in the literature (to name a few Hejhal [12], Colbois and Courtois [9], Ji [16], Wolpert [24], Judge [17]) (see also [19, Theorem 2]). These limiting results can be summarized as:

Theorem 5.1 Let (S_m) be a sequence of hyperbolic surfaces in $\mathcal{M}_{g,n}$ that converges to a finite area hyperbolic surface $S \in \partial \mathcal{M}_{g,n}$. Let (λ_m, ϕ_m) be an eigenpair of S_m such that $\lambda_m \to \lambda < \infty$. Then, up to extracting a subsequence and up to rescaling, the sequence (ϕ_m) converges to a generalized eigenfunction, uniformly over compacta, if one of the following is true (i) n = 0 ([16]) (ii) $n \neq 0$ and $\lambda < \frac{1}{4}$ ([9,12]) (iii) $n \neq 0$ and $\lambda > \frac{1}{4}$ ([24]) (iii) $n \neq 0$, $\lambda_m \leq \frac{1}{4}$ and ϕ_m is cuspidal ([19]).

Recall that there is a copy of $\mathcal{M}_{0,2g+n}$ in the compactification $\overline{\mathcal{M}_{g,n}}$ of $\mathcal{M}_{g,n}$. The ideas in [5] along with above limiting results imply the following.

Lemma 5.1 *For any pair* (g, n), $\Lambda_1(g, n) \ge \Lambda_1(0, 2g + n)$.

Motivated by this we focus on $\Lambda_1(0, n)$. Although we would not be able to prove Conjecture 1.2 we have Theorem 1.7 on the multiplicity of λ_1 which we prove now.

5.1 Proof of Theorem 1.7

Let *S* be a finite area hyperbolic surface of genus 0 and assume that $\lambda_1(S)$ is a small eigenvalue. Following the discussion in Sect. 1.2 $\lambda_1(S) < \frac{1}{4}$. Let \overline{S} denote the closed surface obtained by filling in the punctures of *S*. Let ϕ be a $\lambda_1(S)$ -eigenfunction. Then the closure $\overline{\mathcal{Z}}(\phi)$ of the nodal set $\mathcal{Z}(\phi)$ of ϕ is a finite graph in \overline{S} by Lemma 2.1. In particular, $\overline{\mathcal{Z}}(\phi)$ is a union of closed loops (not necessarily disjoint) in \overline{S} . Observe also that the number of components of $\overline{S} \setminus \overline{\mathcal{Z}}(\phi)$ is same as that of $S \setminus \mathcal{Z}(\phi)$.

Now let $\overline{\mathcal{Z}(\phi)}$ consists of more than one closed loop. Then by Jordan curve theorem the number of components of $\overline{S} \setminus \overline{\mathcal{Z}(\phi)}$ is at least three. This is a contradiction to Courant's nodal domain Theorem 2.2 which says that a $\lambda_1(S)$ -eigenfunction can have at most two nodal domains. Hence we conclude that $\overline{\mathcal{Z}(\phi)}$ consists of exactly one closed loop. In particular, we have the following description of $\mathcal{Z}(\phi)$ at any puncture.

Lemma 5.2 If one of the punctures p of S is in $\overline{Z(\phi)}$ then the number of arcs in $\overline{Z(\phi)}$ emanating from p is at most two.

Let $\lambda_1(S) = s(1-s)$ with $s \in (\frac{1}{2}, 1]$. Let p be one of the punctures of S. Let \mathcal{P}^t be a cusp around p (see Sect. 2.3). Recall that S being a punctured sphere, does not have any small cuspidal eigenvalue [13,20]. Thus any $\lambda_1(S)$ -eigenfunction ϕ is a linear combination of residues of Eisenstein series (see [14]). It follows from [14, Thorem 6.9] that the y^s term can not occur in the Fourier development (see (2.5) and (2.6)) of these residues in \mathcal{P}^t . Hence ϕ has a Fourier development in \mathcal{P}^t of the form:

$$\phi(x, y) = \phi_0 y^{1-s} + \sum_{j \ge 1} \sqrt{\frac{2jy}{\pi}} K_{s-\frac{1}{2}}(jy) (\phi_j^e \cos(j.x) + \phi_j^o \sin(j.x)).$$
(5.1)

Now we consider the space \mathcal{E}_1 generated by $\lambda_1(S)$ -eigenfunctions. The map $\pi : \mathcal{E}_1 \to \mathbb{R}^3$ given by $\pi(\phi) = (\phi_0, \phi_1^e, \phi_1^o)$ is linear and so if dim $\mathcal{E}_1 > 3$ then ker π is non-empty. Let

 $\psi \in \ker \pi$ i.e. $\psi_0 = \psi_1^e = \psi_1^o = 0$. Then by the result [17] of Judge, the number of arcs in $\mathcal{Z}(\psi)$ emanating from *p* is at least four, a contradiction to Lemma 5.2.

Acknowledgments I would like to thank my advisor Jean-Pierre Otal for all his help starting from suggesting the problem to me. I am thankful to Peter Buser and Werner Ballmann for the discussions that I had with them on this problem. Finally I would like to thank the Max Planck Institute for Mathematics in Bonn for its support and hospitality.

Appendix

For the convenience of the reader we give a proof of the fact that, for $(g, n) \neq (0, 4)$, (1, 1), the complement $\mathcal{M}_{g,n} \setminus \mathcal{I}_{\epsilon}$ of the compact set $\mathcal{I}_{\epsilon} = \{S \in \mathcal{M}_{g,n} : s(S) \geq \epsilon\}$ [1] is path connected.

Lemma 5.3 For any $(g, n) \neq (0, 4)$, (1, 1) with 2g - 2 + n > 0 and any $\epsilon > 0$ the set $\mathcal{M}_{g,n} \setminus \mathcal{I}_{\epsilon}$ is path connected.

Proof Let S_1 and S_2 be two surfaces in $\mathcal{M}_{g,n}$ such that $s(S_i) < \epsilon$. So we have simple closed geodesics γ_1 on S_1 and γ_2 on S_2 such that the length l_{γ_i} of γ_i is $< \epsilon$. Recall that it has always been our practise to treat $\mathcal{M}_{g,n}$ as a subset of all possible metrics on a fixed surface S and the geodesics are understood to be parametric curves on S that satisfy certain differential equations provided by the metric.

With this understanding let us first assume that γ_1 does not intersect γ_2 . So we may consider a pants decomposition *P* of *S* containing both γ_1 and γ_2 . Let the Fenchel–Nielsen coordinates of *S_i* be given by $(l_j(S_i), \theta_j(S_i))_{j=1}^{3g-3+n}$. Here l_1, l_2 are the length parameters along γ_1, γ_2 and θ_1, θ_2 are twist parameters along γ_1, γ_2 . Then consider the path $\beta : [0, 1] \rightarrow T_2$ given by:

$$l_1(\beta(t)) = \begin{cases} l_1(S_1) & \text{if } t \in [0, \frac{1}{2}], \\ 2(1-t)l_1(S_1) + (2t-1)l_1(S_2) & \text{if } t \in [\frac{1}{2}, 1] \end{cases}$$
$$l_2(\beta(t)) = \begin{cases} (1-2t)l_2(S_1) + 2tl_2(S_2) & \text{if } t \in [0, \frac{1}{2}], \\ l_2(S_2) & \text{if } t \in [\frac{1}{2}, 1] \end{cases}$$

 $l_3(\beta(t)) = (1-t)l_3(S_1)+tl_3(S_2)$ and $\theta_j(\beta(t)) = (1-t)\theta_j(S_1)+t\theta_j(S_2)$. Since $l_1(\beta(t)) < \epsilon$ for $t \in [0, \frac{1}{2}]$ and $l_2(\beta(t)) < \epsilon$ for $t \in [\frac{1}{2}, 1]$ we observe that $s(\beta(t)) < \epsilon$ for all t. The image of β under the quotient map $\mathcal{T}_{g,n} \to \mathcal{M}_{g,n}$ produces the required path joining S_1 and S_2 .

Now let us assume that γ_1 intersects γ_2 . Let γ be a simple closed geodesic that does not intersect γ_1 and γ_2 . By our assumption i.e. $(g, n) \neq (0, 4), (1, 1)$ such a geodesic exists. Then by the procedure described above both S_1 and S_2 can be joined by a path in $\mathcal{M}_{g,n} \setminus \mathcal{I}_{\epsilon}$ to a surface on which γ has length $< \epsilon$. This finishes the proof.

References

- 1. Bers, L.: A remark on Mumford's compactness theorem. Isr. J. Math. 12, 400-407 (1972)
- 2. Buser, P.: Cubic graphs and the first eigenvalue of a Riemann surface. Math. Z. 162, 87–99 (1978)
- 3. Buser, P.: On the bipartition of graphs. Discrete Appl. Math. 9, 105–109 (1984)
- 4. Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, vol. 106. Birkhäuser Boston Inc, Boston (1992)

- Burger, M., Buser, P., Dodziuk, J.: Riemann surfaces of large genus and large λ₁. Geometry and analysis on manifolds. In: Sunada, T. (ed.) Lecture Notes in Mathematics, vol. 1339, pp. 54–63. Springer, Berlin (1988)
- 6. Brooks, R., Makover, E.: Riemann surfaces with large first eigenvalue. J. Anal. Math. 83, 243–258 (2001)
- 7. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic Press, London (1984)
- 8. Cheng, S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51, 43-55 (1976)
- Colbois, B., Courtois, G.: Les valeurs propres inférieures á 1/4 des surfaces de Riemann de petit rayon d'injectivité. Comment. Math. Helv. 64(3), 349–362 (1989)
- Colbois, B., de Verdire, Y.C.: Sur la multiplicit de la premire valeur propre d'une surface de Riemann courbure constante (French) (Multiplicity of the first eigenvalue of a Riemann surface with constant curvature). Comment. Math. Helv. 63(2), 194–208 (1988)
- Hatcher, A.: Algebraic Topology (English summary), xii+544 pp. Cambridge University Press, Cambridge (2002). ISBN: 0-521-79160-X
- Hejhal, D.: Regular b-groups, degenerating Riemann surfaces and spectral theory. Mem. Am. Math. Soc 88, 437 (1990)
- 13. Huxley, M.N.: Cheeger's inequality with a boundary term. Comment. Math. Helv. 58, 347–354 (1983)
- Iwaniec, H.: Introduction to the Spectral Theory of Automorphic Forms. Bibl. Rev. Mat. Iberoamericana, Revista Matemática Iberoamericana, Madrid (1995)
- Jenni, F.: Uber den ersten Eigenwert des Laplace-Operators auf ausgewhlten Beispielen kompakter Riemannscher Flchen (German) [On the first eigenvalue of the Laplace operator on selected examples of compact Riemann surfaces]. Comment. Math. Helv. 59(2), 193–203 (1984)
- 16. Ji, L.: Spectral degeneration of hyperbolic Riemann surfaces. J. Differ. Geom. 38(2), 263–313 (1993)
- 17. Judge, C.: The nodal set of a finite sum of Maass cusp forms is a graph. In: Proceedings of Symposia in Pure Mathematics, vol. 84 (2012)
- Kim, H.H.: Functoriality for the exterior square of *GL*₄ and symmetric fourth of *GL*₂. J. Am. Math. Soc. 16(1), 139–183 (2003)
- Mondal, S.: Topological bounds on the number of cuspidal eigenvalues of finite area hyperbolic surfaces. Int. Math. Res. Not. (to appear)
- Otal, J.-P.: Three topological properties of small eigenfunctions on hyperbolic surfaces. In: Geometry and Dynamics of Groups and Spaces, Progr. Math., vol. 265. Birkhäuser, Bassel (2008)
- 21. Otal, J.-P., Rosas, E.: Pour toute surface hyperbolique de genre g, $\lambda_{2g-2} > 1/4$. Duke Math. J. **150**(1), 101–115 (2009)
- Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proceedings of the Symposium on Pure Mathematics VII, Am. Math. Soc., pp. 1–15 (1965)
- Strohmaier, A., Uski, V.: An algorithm for the computation of eigenvalues, spectral zeta functions and zeta-determinants on hyperbolic surfaces. Commun. Math. Phys. 317(3), 827–869 (2013)
- 24. Wolpert, S.A.: Spectral limits for hyperbolic surface, I. Invent. Math. 108, 67–89 (1992)